1.3 基于物品的协同过滤

思想

  • 先根据所有用户的历史行为,计算物品相似性。
  • 把某用户喜欢物品相似的类型推给该用户。

例子

在这里插入图片描述

  • 想知道alice对物品5是否喜欢,想找到物品1、2、3、4和物品5最相关的,然后根据alice的打分情况对物品5进行打分。
  • 根据皮卡尔相关系数计算。
public static void main(String[] args) {
        // 物品1(3,4,3,1),物品5(3,5,4,1)
        // 计算皮尔逊相关系数
        double[] nums1 = {3,4,3,1};
        double[] nums2 = {3,5,4,1};

        double avg1 = (nums1[0] + nums1[1] + nums1[2] + nums1[3])/4;
        double avg2 = (nums2[0] + nums2[1] + nums2[2] + nums2[3])/4;

        for(int i = 0; i < nums1.length; i++){
            nums1[i] = nums1[i] - avg1;
            nums2[i] = nums2[i] - avg2;
            System.out.println(nums1[i]+" " + nums2[i]);
        }

        double fenzi = 0;
        double fenmu1 = 0;
        double fenmu2 = 0;
        for(int i = 0; i < nums1.length; i++){
             fenzi += nums1[i] * nums2[i];
             fenmu1 += nums1[i] * nums1[i];
             fenmu2 += nums2[i] * nums2[i];
        }
        double fenmu = Math.sqrt(fenmu1) * Math.sqrt(fenmu2);
        System.out.println(fenzi);
        System.out.println(fenmu);
        double result = fenzi / fenmu;
        System.out.println(result);
    } 

物品1和物品5相关系数约为0.97(0.9694584179118515)

  • 最终得分
    在这里插入图片描述

13/4 :物品5平均分
0.97 0.58 :相关系数
3.2 : 物品1的平均分

算法权重改进方法

  • 基本公式:
    在这里插入图片描述

  • 对热门物品进行惩罚
    在这里插入图片描述

  • 控制热门物品惩罚力度
    在这里插入图片描述

  • 对活跃用户进行惩罚

在这里插入图片描述

问题

协同过滤算法存在的问题之一就是泛化能力弱:

  • 即协同过滤无法将两个物品相似的信息推广到其他物品的相似性上。
  • 导致的问题是热门物品具有很强的头部效应, 容易跟大量物品产生相似, 而尾部物品由于特征向量稀疏, 导致很少被推荐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个菜鸡猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值