Kruskal算法构造最小生成树

1.问题
举一个实例,画出采用Kruskal算法构造最小生成树的过程。
2.解析
已知图V = {…} 我们构造一棵最小生成树T
第一步:随意选取起点
第二步:将所有边按权值从小到大的顺序排序
第三步:按顺序遍历每条边(不能构成回路),直到所有节点都被遍历了。
实例:
图V如下图所示
在这里插入图片描述


将每条边按权值从小到大进行排序:
AB BC AD BD DE CE(3 3 4 5 6 7)
选取AB(3)
此时被选中的点:A B
在这里插入图片描述


接下来是BC(3)
此时被选中的点:A B C
在这里插入图片描述


接下来是AD(4)
此时被选中的点:A B C D
在这里插入图片描述


最后是DE(6),虽然BD(5)<DE(6),但是BD会与已经遍历过的点构成回路。
在这里插入图片描述
3.设计

void init()//初始化
{
    for (int i=0;i<n;++i)parent[i]=i;
}
int find(int x)//查找父亲节点
{
    return x==parent[x]?x:find(parent[x]);
}
void Union(int x,int y)//合并
{
    int fx=find(x);
    int fy=find(y);
    parent[fx]=fy;
}
int kruskal(){
  sort(e,e+m);
  init();
  int cnt =0,res=0;
  for (int i=0;i<m;++i){
      if(find(e[i].u)!=find(e[i].v)){
          Union(e[i].u,e[i].v);
          res+=e[i].w;
          cnt++;
      }
      if(cnt>n-1)break;
  }
  return res;
}
Kruskal算法是一种常用的构造最小生成树算法,其基本思想是从小到大选择边,直到选出n-1条边为止。下面是C语言实现Kruskal算法构造最小生成树的代码: ```c #include <stdio.h> #include <stdlib.h> #define MAX_VERTICES 1000 #define MAX_EDGES 10000 typedef struct edge { int u, v, w; } Edge; int parent[MAX_VERTICES]; int rank[MAX_VERTICES]; Edge edges[MAX_EDGES]; Edge mst[MAX_EDGES]; int num_vertices, num_edges; void make_set(int x) { parent[x] = x; rank[x] = 0; } int find_set(int x) { if (x != parent[x]) { parent[x] = find_set(parent[x]); } return parent[x]; } void union_set(int x, int y) { int px = find_set(x); int py = find_set(y); if (rank[px] > rank[py]) { parent[py] = px; } else { parent[px] = py; if (rank[px] == rank[py]) { rank[py]++; } } } int compare(const void *a, const void *b) { Edge *ea = (Edge *) a; Edge *eb = (Edge *) b; return ea->w - eb->w; } void kruskal() { int i, j = 0; for (i = 0; i < num_vertices; i++) { make_set(i); } qsort(edges, num_edges, sizeof(Edge), compare); for (i = 0; i < num_edges && j < num_vertices - 1; i++) { Edge e = edges[i]; int u = e.u; int v = e.v; if (find_set(u) != find_set(v)) { union_set(u, v); mst[j++] = e; } } } int main() { int i; scanf("%d %d", &num_vertices, &num_edges); for (i = 0; i < num_edges; i++) { scanf("%d %d %d", &edges[i].u, &edges[i].v, &edges[i].w); } kruskal(); printf("Minimum Spanning Tree:\n"); for (i = 0; i < num_vertices - 1; i++) { printf("%d %d %d\n", mst[i].u, mst[i].v, mst[i].w); } return 0; } ``` 在这个实现中,我们使用了一个Edge结构体来表示边,其中包括起点、终点和边权。我们使用了并查集来判断是否形成环,使用了快速排序算法对所有边按照边权从小到大排序。最后,我们输出构造出的最小生成树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值