PS将白底黑字变成黑底白字

ctrl + i 颜色反转

### OCR 中黑底白字白底黑字的处理方法 对于光学字符识别 (OCR),图像预处理阶段至关重要,尤其是当涉及到文字颜色反转的情况下。为了确保最佳效果,在使用 Tesseract-OCR 进行图片识别时通常需要保持背景为白色而字体为黑色。 #### 处理黑底白字的方法 如果原始图像是黑底白字,则可以通过像素值取反来转换成适合 OCR 的形式: ```python import numpy as np import cv2 rawImage = cv2.imread('image_path') height, width = rawImage.shape[:2] gray = cv2.cvtColor(rawImage, cv2.COLOR_BGR2GRAY) dst = np.zeros((height, width), dtype=np.uint8) for i in range(height): for j in range(width): grayPixel = gray[i, j] dst[i, j] = 255 - grayPixel ``` 这段代码读入一张彩色图像并将其转化为灰度模式;接着创建一个新的空白画布用于存储经过变换后的黑白对比度增强版本,并通过遍历每一个像素点完成色彩翻转操作[^2]。 #### 白底黑字的标准情况 而对于已经满足条件即白底黑字的情形下,可以直接应用形态学操作进一步优化输入质量: ```python binary = ... # 假设 binary 是二值化之后的结果 erode = cv2.erode(binary, None, iterations=2) dilate = cv2.dilate(erode, None, iterations=1) cv2.imshow('dilate', dilate) ``` 这里展示了如何利用腐蚀(`erode`)和膨胀(`dilate`)技术改善文本区域边界清晰度的同时减少噪声干扰[^1]。 #### 方法间的差异 主要区别在于是否需要执行额外的颜色空间映射过程——仅当源材料不符合标准格式(即不是白底黑字)才需如此。一旦完成了必要的调整使得目标对象呈现为深色前景位于浅色背景下,后续步骤就变得相对统一了,包括但不限于上述提到的各种形态学滤波手段以及可能涉及的文字定位、切割等高级功能[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值