题目链接:https://ac.nowcoder.com/acm/contest/18417/H
题目:
你有h,s两个值, 给你n个任务,每个任务会消耗h值和 s值同时会得到收获w
其中,h不能为0,如果h <= 0 的话你就会死亡,如果s < 0的话,可以消耗 h 值给s补上,直到h <= 0死亡。
求不死亡所能得到的最大值。
输入描述:
第一行输入n,h,s
后面 n行输入每个任务消耗的 h,s 获得的w.
输出描述:
输出不死亡条件下所能获得的最大价值。
分析:
状态表示和状态计算:
f[i][j][k]状态表示:从前i个任务中选,h值为j,s值为k的情况下所能获得的最大值。
状态计算:
1.不要i,f[i - 1][j][k]
2.要i,
(1) j - h[i] > 0 , k - s[i] > 0 的情况下
f[i][j][k] = f[i - 1][j - h[i]][k - s[i]];
(2)k - s[i] < 0 , j - h[i] + k - s[i] > 0的情况下:
f[i][j][k] = f[i - 1][j - h[i] + k - s[i]][0];
代码实现:
# include <iostream>
using namespace std;
const int N = 1010 ,M = 310;
long long f[2][M][M];
long long n,h,s;
long long h1[N];
long long s1[N];
long long w[N];
int main()
{
scanf("%lld %lld %lld",&n,&h,&s);
for(int i =1 ; i <= n ; i++)
{
scanf("%lld %lld %lld",&h1[i],&s1[i],&w[i]);
}
for(int i = 1 ; i <= n ; i++)
{
for(int j = 0 ; j <= h ; j++)
{
for(int k = 0 ; k <= s ; k++)
{
f[i & 1][j][k] = f[(i - 1) & 1][j][k]; //不要第i个任务
if(j - h1[i] > 0 && k - s1[i] >= 0)
{
f[i & 1][j][k] = max(f[i & 1][j][k],f[(i - 1) & 1][j - h1[i]][k - s1[i]] + w[i]);
}
if(k - s1[i] < 0 && j - h1[i] + k - s1[i] > 0)
{
f[i & 1][j][k] = max(f[i & 1][j][k],f[(i - 1) & 1][j - h1[i] + k - s1[i]][0] + w[i]);
}
}
}
}
printf("%lld\n",f[n & 1][h][s]);
return 0;
}