搜索 + 拓扑排序 + 位运算 + bitset<>的应用:可达性统计

题目链接:https://www.acwing.com/problem/content/166/

题目:

给定一张 N 个点 M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。

输入格式

第一行两个整数 N,M,接下来 M行每行两个整数 x,y,表示从 x 到 y 的一条有向边。

输出格式

输出共 N 行,表示每个点能够到达的点的数量。

数据范围

1≤N,M≤30000

输入样例:

10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9

输出样例:

1
6
3
3
2
1
1
1
1
1

分析:

由于此题是一个有向无环图,所以可以使用拓扑排序的方式进行求解。

将得到的拓扑序求出来后,我们可以从后往前求解。 将后面节点能够到达的节点统计下来。f[i]:表示的就是节点i能够到达的所有节点的集合的形式。而k 节点能够到达 i 节点,则k节点一定能够可以到达 i节点能够经过的节点。

举例:k能够到达i1,i2,i3节点,而i1,i2,i3节点能够到的点已经计算好了为f[i],

那么f[k] = f[i1] 并上 f[i2] 并上 f[i3]所能经过的所有节点 + k自己

而这个过程就可以使用位运算中的bitset<>进行优化,可以经过哪个点,则这个点对应的位置就置为1,不能经过哪个点就置为0.

而f[i1] ,f[i2],f[i3]....的并集就可以用 或运算的方式实现了。

最后统计 哪些位置为1,就是可以到达哪些位置。

bitset的使用:

bitset<maxn(长度)> f;

f.reset()     //全部变成0
f.count()    //统计1的个数
还可以使用可使用| , &等操作

代码实现:

# include <iostream>
# include <cstring>
# include <bitset>
# include <queue>
using namespace std;

const int N = 30010;

int h[N],e[N],ne[N],idx;

bitset<N> f[N]; // f[i]的含义是i这个点能够到哪些点,而使用bitset<>后,那么那个点所对应位置就被置为1。 

int rudu[N]; // topsort找入度为0的情况

int n,m;

queue<int> q; // 拓扑排序一般用BFS的方式去实现
int topxu[N]; // 拓扑排序的结果

int cnt = 0;

void add(int a ,int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

void topsort()
{
    for(int i = 1 ; i <= n ; i++)
    {
        if(rudu[i] == 0)
        {
            q.push(i);
        }
    }
    while(q.size())
    {
        int temp = q.front();
        q.pop();
        
        topxu[++cnt] = temp;
        
        for(int i = h[temp] ; i != -1; i = ne[i])
        {
            int j = e[i];
            rudu[j]--;
            if(rudu[j] == 0)
            {
                q.push(j);
            }
        }
    }
}

int main()
{
    memset(h,-1,sizeof h);
    scanf("%d %d",&n,&m);
    for(int i = 1 ; i <= m ; i++)
    {
        int a,b;
        scanf("%d %d",&a,&b);
        add(a,b);
        rudu[b]++;
    }
    
    topsort();
    
    for(int i = n ; i >= 1 ; i--)
    {
        int j = topxu[i];
        f[j][j] = 1;
        for(int k = h[j] ; k != -1 ; k = ne[k])
        {
            int t = e[k];
            f[j] |= f[t];
        }
    }
    
    for(int i = 1 ; i <= n ; i++)
    {
        printf("%ld\n",f[i].count());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值