分巧克力-二分

文章讲述了在儿童节,小明有N块不同尺寸的巧克力招待K位小朋友,需要将它们切成正方形且边长相等的巧克力。通过编程实现一个算法,找到能切出的最大正方形边长,确保每个小朋友都能得到至少1块巧克力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

儿童节那天有 K位小朋友到小明家做客。

小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 N块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。

为了公平起见,小明需要从这 N块巧克力中切出 K 块巧克力分给小朋友们。

切出的巧克力需要满足:

  1. 形状是正方形,边长是整数
  2. 大小相同

例如一块 6×56×5 的巧克力可以切出 66 块 2×22×2 的巧克力或者 22 块 3×33×3 的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入格式

第一行包含两个整数 Ni和 Ki。

以下 N行每行包含两个整数 Hi和 Wi。

输入保证每位小朋友至少能获得一块 1×11×1 的巧克力。

输出格式

输出切出的正方形巧克力最大可能的边长。

数据范围

1≤N,K≤10^5,
1≤Hi,Wi≤10^5

输入样例:
2 10
6 5
5 6
输出样例:
2

解题 

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;
const int N = 1e5+10;
int n,k;
int w[N],h[N];

bool check(int x)
{
    int res = 0;
    for(int i=0;i<n;i++)
    {
        int a = h[i] / x;
        int b = w[i] / x;
        res += a*b;
    }
    if(res < k) return false;
    return true;
}

int main()
{
    cin >> n >> k;
    int m = 0;
    for(int i=0;i<n;i++) 
    {
        cin >> h[i] >>w[i];
        m = max(m, min(h[i],w[i])); // 找出所有巧克力中最小边的最大值
    }
    
    int l = 1, r = m; //边长
    while(l < r) 
    {
        int mid = (l + r + 1) >> 1; // 注意这里加1,向上取整
        if(check(mid)) l = mid; // 尝试找一个更大的边长
        else r = mid - 1;
    }
    cout << l <<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值