Description
给定序列 a = ( a 0 , a 1 , ⋯ , a n − 1 ) a=(a_0,a_1,\cdots,a_{n-1}) a=(a0,a1,⋯,an−1),有 m m m 个操作分三种:
- add ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + v a_i\gets a_i+v ai←ai+v.
- divide ( l , r , v ) \operatorname{divide}(l,r,v) divide(l,r,v):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← ⌊ a i v ⌋ a_i\gets \lfloor \frac{a_i}{v}\rfloor ai←⌊vai⌋.
- qmin ( l , r ) \operatorname{qmin}(l,r) qmin(l,r):求 min i = l r a i \min\limits_{i=l}^r a_i i=lminrai.
- qsum ( l , r ) \operatorname{qsum}(l,r) qsum(l,r):求 ∑ i = l r a i \sum\limits_{i=l}^r a_i i=l∑rai.
Limitations
1
≤
n
,
m
≤
1
0
5
1\le n,m\le 10^5
1≤n,m≤105
0
≤
l
≤
r
<
n
0\le l \le r<n
0≤l≤r<n
∣
c
∣
≤
1
0
4
|c|\le 10^4
∣c∣≤104
2
≤
d
≤
1
0
9
2\le d \le 10^9
2≤d≤109
2
s
,
256
MB
2\text{s},256\text{MB}
2s,256MB
Solution
由于除法带下取整,无法合并标记,但一个区间
divide
\operatorname{divide}
divide 上
O
(
log
V
)
O(\log V)
O(logV) 次,最大值就会变成
1
1
1,所以可以暴力做.
但
add
\operatorname{add}
add 操作会让复杂度假掉,不过如果
max
−
⌊
max
v
⌋
=
min
−
⌊
min
v
⌋
\textit{max}-\lfloor \frac{\textit{max}}{v}\rfloor=\textit{min}-\lfloor \frac{\textit{min}}{v}\rfloor
max−⌊vmax⌋=min−⌊vmin⌋,那么这个区间每个数的变化量一致,可以直接打加标记.
时间复杂度
O
(
m
log
n
log
V
)
O(m\log n\log V)
O(mlognlogV).
有几个注意点:
C++
除法向 0 0 0 取整,但我们需要向下取整,需要转化.- 下标从 0 0 0 开始.
Code
3.7 KB , 1.13 s , 6.9 MB (in total, C++20 with O2) 3.7\text{KB},1.13\text{s},6.9\text{MB}\;\texttt{(in total, C++20 with O2)} 3.7KB,1.13s,6.9MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
constexpr int inf = 2e9;
inline int fdiv(int a, int b) {
if (a >= 0) return a / b;
else return (a - b + 1) / b;
}
namespace seg_tree {
struct Node {
int l, r;
int max, min, tag;
i64 sum;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
inline SegTree() {}
inline SegTree(const vector<int>& a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
inline void pushup(int u, int mid) {
tr[u].max = std::max(tr[ls(mid)].max, tr[rs(mid)].max);
tr[u].min = std::min(tr[ls(mid)].min, tr[rs(mid)].min);
tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
}
inline void apply(int u, int tag) {
tr[u].max += tag;
tr[u].min += tag;
tr[u].tag += tag;
tr[u].sum += 1LL * tag * (tr[u].r - tr[u].l + 1);
}
inline void pushdown(int u, int mid) {
if (tr[u].tag) {
apply(ls(mid), tr[u].tag);
apply(rs(mid), tr[u].tag);
tr[u].tag = 0;
}
}
void build(int u, int l, int r, const vector<int>& a) {
tr[u].l = l, tr[u].r = r;
if (l == r) return (void)(tr[u].sum = tr[u].max = tr[u].min = a[l]);
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
void add(int u, int l, int r, int k) {
if (l <= tr[u].l && tr[u].r <= r) return apply(u, k);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) add(ls(mid), l, r, k);
if (r > mid) add(rs(mid), l, r, k);
pushup(u, mid);
}
void divide(int u, int l, int r, int k) {
if (l <= tr[u].l && tr[u].r <= r) {
const int dmax = fdiv(tr[u].max, k) - tr[u].max;
const int dmin = fdiv(tr[u].min, k) - tr[u].min;
if (dmax == dmin) return apply(u, dmax);
}
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) divide(ls(mid), l, r, k);
if (r > mid) divide(rs(mid), l, r, k);
pushup(u, mid);
}
int qmin(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].min;
const int mid = (tr[u].l + tr[u].r) >> 1;
int res = inf;
pushdown(u, mid);
if (l <= mid) res = std::min(res, qmin(ls(mid), l, r));
if (r > mid) res = std::min(res, qmin(rs(mid), l, r));
return res;
}
i64 qsum(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
const int mid = (tr[u].l + tr[u].r) >> 1;
i64 res = 0;
pushdown(u, mid);
if (l <= mid) res += qsum(ls(mid), l, r);
if (r > mid) res += qsum(rs(mid), l, r);
return res;
}
inline void range_add(int l, int r, int v) { add(0, l, r, v); }
inline void range_div(int l, int r, int v) { divide(0, l, r, v); }
inline int range_min(int l, int r) { return qmin(0, l, r); }
inline i64 range_sum(int l, int r) { return qsum(0, l, r); }
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<int> a(n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
SegTree sgt(a);
for (int i = 0, op, l, r, v; i < m; i++) {
scanf("%d %d %d", &op, &l, &r);
if (op == 1) scanf("%d", &v), sgt.range_add(l, r, v);
if (op == 2) scanf("%d", &v), sgt.range_div(l, r, v);
if (op == 3) printf("%d\n", sgt.range_min(l, r));
if (op == 4) printf("%lld\n", sgt.range_sum(l, r));
}
return 0;
}