- 博客(19)
- 收藏
- 关注
原创 技术胖分享的前端程序 私藏工具和网站
自学前端程序 私藏工具和网站分享01.JavaScriptJavaScript 教程 | 通俗易懂的JavaScript教程ES6 入门教程 | 通俗易懂的ES6入门教程JavaScript 30 | 使用原生JavaScript在30天内完成30个项目现代 JavaScript 教程 | 最近很流行的JavaScript教程Node.js学习指南 | 系统的Node.js学习教程和笔记系统整理JS 代码规范 | 优秀的 JS代码规范TypeScript 教程 | 通俗易懂的Type
2023-07-05 20:19:36 334 1
原创 基于BOW的图像检索 【计算机视觉第七章】
目录BOW简介基于BOW的图像检索流程1. 特征提取 (SIFT) 2. 学习 “视觉词典(visual vocabulary)” (k-means) 3. 针对输入特征集,根据视觉词典进行量化 4. 把输入图像,根据TF-IDF转化成视觉单词( visual words)的频率直方图 5. 构造特征到图像的倒排表,通过倒排表快速索引相关图像6. 根据索引结果进行直方图匹配 代码实现 数据集准备创建词汇 创建索引 索引测试 运行结果总结 Bag of words,也叫做“词袋”,在信息检索中,Ba
2022-06-18 19:42:00 820 1
原创 第四章相机模型
为什么要相机标定?在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。进行摄像机标定的目的:求出相机的内、外参数,以及畸变参数。 张氏标定法的整体思路为先求出世界坐标系到像素坐标系的单应性矩阵(单应性矩阵其实就是一个图像中的像素点到另外一个图像中像素点的变换矩阵,双目相机系统中也有单应性矩阵,其是左右相机图像之间的变换矩阵),然后根据单应性矩阵得到内参矩阵,最后得到外参矩阵, 该方法介于摄
2022-06-14 14:00:07 274
原创 第三章图像映射
图像拼接的基础流程平移:需要两对匹配特征,生成两个方程求解两个未知量;仿射:需要三对匹配特征,生成六个方程求解6个未知量;单应性变换:需要至少四对,生成八个方程求解8个未知量。RANSAC的基本思想和算法流程如下: 图割(Graph Cut)图像分割的基本思想是:相似且彼此相近的像素应该划分到同一区域。图割图像分割的思想是用途来表示图像,并对图进行划分以使割代价最小。在用图表示图像时,增加两个额外的节点,即源点和汇点;并仅考虑那些源点和汇点分开的割。寻找最小割等同于在源点和汇点间寻找最大流。...
2022-06-14 10:19:40 193
原创 第五章多视几何
为了描述对极几何,引入基础矩阵F。在 计算机视觉 中, 基础矩阵 (Fundamental matrix)F是一个3×3的 矩阵 ,表达了 立体像对 的 像点 之间的对应关系。(1) 基础矩阵是秩为2、自由度为7的齐次矩阵。(2)若x与x’是两幅图上的对应点,那么x′TFx=0。(3)l’是对应于x的对极线,l′=Fx。(4)若e是第二个摄像机光心在第一幅图像上的极点,那么Fe=0 。其中x↔x′是两幅图像的任意一对匹配点。由于每一组点的匹配提供了计算F系数的一个线性方程,当给定至少7个点(3×3的齐
2022-06-13 22:37:03 217
原创 照相机标定【计算机视觉第四章】
相机标定步骤:1、打印一张棋盘格,把它贴在一个平面上,作为标定物。2、通过调整标定物或摄像机的方向,为标定物拍摄一些不同方向的照片。3、从照片中提取棋盘格角点。4、估算理想无畸变的情况下,五个内参和六个外参。5、应用最小二乘法估算实际存在径向畸变下的畸变系数。6、极大似然法,优化估计,提升估计精度。...
2022-05-14 16:15:04 2783
原创 全景图拼接【计算机视觉第三章】
全景图像拼接基本介绍图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。图像拼接在医学成像、计算机视觉、卫星数据、军事目标自动识别等领域具有重要意义。图像拼接的输出是两个输入图像的并集。图像配准(image alignment)和图像融合是图像拼接的两个关键技术。图像配准是图像融合的基础,而且图像配准算法的计算量一般非常大,因此图像拼接技术的发展很大程度上取决于图像配准技术的创新。早期的图像配准技术主要采用点匹配法,这类方..
2022-04-13 14:17:51 7163 2
原创 局部图像描述子【计算机视觉第二章】
什么是局部图像描述子所谓局部特征描述子就是用来刻画图像中的局部特征的,是以图像中的一个像素点的周围像素点的分布特征来获取该点的局部特征的算法。我们可以使用局部特征的特征点来代表图像的内容包括运动目标跟踪,物体识别,图像配准,全景图像拼接,三维重建等。如果我们想匹配同一个场景中的两幅图像。首先,我们检测每幅图像中的特征,然后提取他们的描述子。第一幅图像中的每一个特征描述子向量都会与第二幅图中的描述子进行比较,得分最高的一对描述子,也就是两个向量的距离最近,将被视为那个特征的最佳匹配。这些图像的局部特征需要
2022-04-08 00:07:31 5098
原创 基本的图像操作和处理【计算机视觉第一章】
一.PIL:Python图像处理库PIL(Python Imaging Library,图像处理库),提供通用的图像处理功能,有大量有用的基本图像操作,比如图像缩放、裁剪、旋转、颜色转换等。下面将具体举例一些PIL基本图像操作。1.读取一副图像并显示from PIL import Imageim = Image.open('image/car.png') #打开原图im.show() #显示原图2.图像颜色转换convert()方法convert中可设置转换模
2022-03-10 22:10:19 3907
原创 【机器学习】SVM算法
什么是SVMSVM (support vector machines)即支持向量机。它是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM 的目的就是想要画出一条线,以 “最好地” 区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM 适合中小型数据样本、非线性、高维的分类问题。 ...
2021-12-26 17:01:15 22095
原创 【C++】STL应用
目录实验要求实验内容1 什么是STL?STL中六大组件:容器STL迭代器结合容器和迭代器解决序列变换(如取反、平方、立方)结合容器和迭代器解决像素变换用set存储学生信息,并进行增删改查操作Set的增删改查用map统计每个输入字符出现的次数并输出字符及对应的次数。实验总结verctorlistdequemapmultimapsetmultiset在实际使用过程中,到底选择这几种容器中的哪一个,应该根据遵循以下原则:...
2021-11-24 16:27:04 1118
原创 [机器学习]Logistic回归
什么是逻辑斯蒂(Logistic)回归?由于逻辑斯蒂回归的原理是用逻辑函数把线性回归的结果(-∞,∞)映射到(0,1),故先介绍线性回归函数和逻辑函数。 1.线性回归函数线性回归函数的数学表达式:其中xi是自变量,y是因变量,y的值域为(-∞,∞),θ0是常数项,θi(i=1,2,...,n)是待求系数,不同的权重θi反映了自变量对因变量不同的贡献程度。我们初中学过...
2021-11-22 01:02:51 3496 1
原创 【C++】实验3 模板
一、模板函数(compare)一般模板函数特化模板函数二、模板类Queue或Stack模板类(Queue,Stack)成员模板函数模板特化:模板函数特化、模板成员函数特化、模板类特化三、模板类AutoPtr构造函数析构函数拷贝构造函数等号、->、*等运算符重载主函数调用AutoPtr...
2021-11-16 23:48:19 444
原创 【机器学习】朴素贝叶斯实现垃圾邮件过滤
朴素贝叶斯法概述朴素贝叶斯法是基于贝叶斯定理与特征条件独立性假设的分类方法。对于给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布(朴素贝叶斯法这种通过学习得到模型的机制,显然属于生成模型);然后基于此模型,对给定的输入 x,利用贝叶斯定理求出后验概率最大的输出 y。贝叶斯公式我们要做的是计算在已知词向量w=(w1,w2,...,wn)w=(w1,w2,...,wn)的条件下求包含该词向量邮件是否为垃圾邮件的概率,即求(s为垃圾邮件):...
2021-11-15 20:10:49 5671 5
原创 实验二 继承和多态
实验内容一、继承访问权限测试设计类A具有public, protected, private等不同属性的成员函数或变量;类B通过public, protected, private等不同方式继承A,在类B的成员函数中测试访问A的成员函数或变量;在类B中添加public, protected, private等不同属性的成员函数或变量,在外部测试访问B的各个成员函数或变量;B以private方式继承A,尝试把A中的部分public成员提升为public。二、友元类继承测试设计类A含有私有变量
2021-10-28 23:41:06 260
原创 【机器学习】采用信息增益、信息增益率、基尼指数来建造决策树。
一.创建数据集乳腺癌数据集breast-cancer.txt含有10个属性(包括决策属性)共286条样本。接下来我将一半样本作训练集,一半样本作测试集。来源(UCI Machine Learning Repository: Breast Cancer Data Set)属性信息1. Class: no-recurrence-events, recurrence-events2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80
2021-10-28 00:12:27 4047 1
原创 (机器学习)使用k-邻近算法实现的两个实例
目录一.判定未知电影的类型2 python代码实现2.1运行结果:二.改进约会网站的配对效果1.实例解释2.数据处理3.实现代码:4. 运行结果:总结一.判定未知电影的类型1.实例解释以电影分类为例子,使用k-近邻算法分类爱情片和动作片。有人曾经统计过很多电影的打斗镜头和接吻镜头,下图显示了6部电影的打斗和接吻镜头数。假如有一部未看过的电影,如何确定它是爱情片还是动作片呢?①首先需要统计这个未知电影存在多少个打斗镜头和接吻镜头,下图中...
2021-10-10 19:34:17 2234
原创 C++-实验一 CMatrix类设计
实验内容一、构造函数CMatrix():不带参数的构造函数;CMatrix(intnRow,intnCol,double*pData=NULL):带行、列及数据指针等参数的构造函数,并且参数带默认值;CMatrix(constchar*strPath):带文件路径参数的构造函数;CMatrix(constCMatrix&m):拷贝构造函数此外会用列表初始化成员变量:CMatrix():m_nRow(0),m_nCol(0),m_pData(NULL)...
2021-10-09 17:06:51 118
原创 使用K-邻近算法实现手写数字识别系统
k-近邻法简介k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常...
2021-10-03 19:23:48 1774
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人