统计推断结果的可视化
一.卡方检验的可视化
卡方检验是利用卡方分布来检验总体的某种假设,主要用于类别变量的推断,比图,一个类别变量的拟合优度,两个类别变量的独立性检验等。
下面检验并可视化以下假设:
①不同满意度的人数分布是否有显著差异。
②网购次数与满意度是否独立。
- 检验不同满意度的人数分布是否有显著差异,也就是检验再满意、不满意、中立的3个类别中,观察人数与期望人数是否一致,即检验如下假设:
H0:观察频数与期望频数差异不显著;H1:观察频数与期望频数差异显著
使用stats包中的chiq.test函数可以实现该检验;使用gginference包中的ggchiqtest函数可以绘制该检验结果的图形,如下图所示。
library(readxl)
data1_1 <- read_excel("C:/Users/26601/Desktop/数据可视化分析/data1_1.xlsx")
library(gginference)
chisq_test=chisq.test(table(data1_1$满意度))
chisq_test #显示卡方检验结果
ggchisqtest(chisq_test,colreject = 'red2',colstat = 'blue2') #绘制卡方检验图
上图是该检验卡方统计量的概率分布,红色阴影面积为显著性水平0.05,其对应的自由度为2时的卡方分布临界值为5.991;蓝色竖线是该检验得到的统计量的位置,统计量的值为59.2.由于检验统计量远大于临界值,拒绝原假设,表示不同满意度之间的人数分布有显著差异。
2.检验网购次数与满意度是否独立,就是检验以下假设
H0:网购次数与满意度独立 ;H1:网购次数与满意度不独立
library(gginference)
tab=table(data1_1$网购次数,data1_1$满意度)
chisq_test=chisq.test(tab)
chisq_test #显示卡方检验结果
ggchisqtest(chisq_test,colreject = 'red2',colstat = 'blue2') #绘制卡方检验图
上图显示了该检验卡方分布的临界值(9.488)和检验统计量的值(5.886).结果显示不拒绝原假设,表示网购次数与满意度独立,即二者之间没有相关性。
二.t检验的可视化
t检验在经典统计推断中有着广泛应用,比如,