多目标优化问题

        多目标优化问题的最优解通常称为 Pareto 最优解。一个 具有 n 维决策变量、m 个目标的多目标优化问题可以描述为 

        其中: x = ( x1,x2,…,xn ) ∈XRn 为 n 维决策向量,X 为 n 维决 策空间; y = ( y1,y2,…,ym ) ∈YRm 为 m 维的目标变量,Y 为 m 维目标空间; gi ( x) ≥0( i = 1,2,…,p) 为 p 个不等式约束; hj ( x) = 0( j = 1,2,…. q) 为 q 个等式约束

        matlab如何写一个多目标函数

多目标优化问题利用fgoalattain 函数求解例6-2

目标函数及约束如下:


max f1 (x) = -3*x1 +2*x2
max f2 (x) =4*x1 十3 *x2
s. t.  2 *x1 十3*x2<=18
        2*x1 +x2<=10
        x1,x2>=0

 函数代码:

function f=mf(x)
f(1)=3*x(1)-2*x(2);
f(2)=-4*x(1)-3*x(2);

约束及函数调用(fgoalattain 函数,并非粒子群算法)

A=[2 3;2 1];
b=[18 ;10];
lb=[0 0];
ub=[100 100];
[x,f,exitflag] = gamultiobj(@mf,2,A,b,[],[],lb,ub)

 

求解代码在书上《MATLAB智能算法30个案例》P103页。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值