五大高难度算法解析及实现

1. 最长公共子序列(Longest Common Subsequence, LCS)

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

解题思路

使用动态规划,创建一个二维数组 dp,其中 dp[i][j] 表示 text1[0...i-1] 和 text2[0...j-1] 的最长公共子序列的长度。

代码实现

def longestCommonSubsequence(text1, text2):
    m, n = len(text1), len(text2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if text1[i - 1] == text2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] + 1
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
    
    return dp[m][n]

2. 编辑距离(Edit Distance)

题目描述

给定两个单词 word1 和 word2,计算出将 word1 转换为 word2 所使用的最少操作次数。

解题思路

同样使用动态规划,dp[i][j] 表示 word1[0...i-1] 转换为 word2[0...j-1] 的最小编辑距离。

代码实现

def minDistance(word1, word2):
    m, n = len(word1), len(word2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0:
                dp[i][j] = j
            elif j == 0:
                dp[i][j] = i
            elif word1[i - 1] == word2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1]
            else:
                dp[i][j] = 1 + min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1])
    
    return dp[m][n]

3. 不同的子序列(Distinct Subsequences)

题目描述

给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数。

解题思路

依然使用动态规划,dp[i][j] 表示 S[0...i-1] 中包含 T[0...j-1] 的不同子序列的个数。

代码实现

def numDistinct(S, T):
    m, n = len(S), len(T)
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        dp[i][0] = 1

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if S[i - 1] == T[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
            else:
                dp[i][j] = dp[i - 1][j]
    
    return dp[m][n]

4. 最大子序和(Maximum Subarray)

题目描述

给定一个整数数组 nums,找到一个具有最大和的连续子数组(至少包含一个数字),并返回其最大和。

解题思路

使用动态规划,dp[i] 表示以 nums[i] 结尾的最大子序和。

代码实现

def maxSubArray(nums):
    n = len(nums)
    dp = [0] * n
    dp[0] = nums[0]
    max_sum = dp[0]

    for i in range(1, n):
        dp[i] = max(nums[i], dp[i - 1] + nums[i])
        max_sum = max(max_sum, dp[i])
    
    return max_sum

5. 最小路径和(Minimum Path Sum)

题目描述

给定一个包含非负整数的 m x n 网格 grid,找出一条从左上角到右下角的路径,使得路径上的数字总和最小。

解题思路

使用动态规划,dp[i][j] 表示从左上角到 (i, j) 的最小路径和。

代码实现

def minPathSum(grid):
    m, n = len(grid), len(grid[0])
    dp = [[0] * n for _ in range(m)]
    dp[0][0] = grid[0][0]

    # 初始化第一行和第一列
    for i in range(1, m):
        dp[i][0] = dp[i-1][0] + grid[i][0]
    for j in range(1, n):
        dp[0][j] = dp[0][j-1] + grid[0][j]

    # 填充剩余的 dp 表
    for i in range(1, m):
        for j in range(1, n):
            dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]

    return dp[-1][-1]


以上五个算法问题都是经典的高难度问题,它们在面试和算法竞赛中经常出现。通过动态规划的方式,我们可以有效地解决这些问题。希望这篇博客能帮助您更好地理解这些算法问题及其解决方案。如果您有任何疑问或建议,欢迎在评论区留言。

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣条yyds

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值