[DP]没有上司的舞会

题面

题目描述

某大学有 n n n 个职员,编号为 1 … n 1\ldots n 1n
他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。
现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数 r i r_i ri,但是呢,如果某个职员的直接上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。
所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入格式

输入的第一行是一个整数 n n n
2 2 2 到第 ( n + 1 ) (n + 1) (n+1) 行,每行一个整数,第 ( i + 1 ) (i+1) (i+1) 行的整数表示 i i i 号职员的快乐指数 r i r_i ri
( n + 2 ) (n + 2) (n+2) 到第 2 n 2n 2n 行,每行输入一对整数 l , k l, k l,k,代表 k k k l l l 的直接上司。

输出格式

输出一行一个整数代表最大的快乐指数。

样例

输入

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5

输出 #1复制

5

数据规模

对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 6 × 1 0 3 1\leq n \leq 6 \times 10^3 1n6×103 − 128 ≤ r i ≤ 127 -128 \leq r_i\leq 127 128ri127 1 ≤ l , k ≤ n 1 \leq l, k \leq n 1l,kn,且给出的关系一定是一棵树。

解析

很容易发现这是一道DP题,但以为给定的是一颗树,那么就考虑在树上DP
在这里插入图片描述

F i , j F_{i,j} Fi,j i ∈ { 0 , 1 } , j ∈ [ 1 , N ] i\in\{0,1\},j\in[1,N] i{0,1},j[1,N] 表示
{ 要 取 第 j 号 点 字 树 内 的 快 乐 指 数 ( i = 1 ) 不 取 第 j 号 点 字 树 内 的 快 乐 指 数 ( i = 0 ) \left\{ \begin{aligned} 要取第j号点字树内的快乐指数(i=1)\\ 不取第j号点字树内的快乐指数(i=0)\\ \end{aligned} \right. {j(i=1)j(i=0)
转移式也就显然:( K K K表示 i i i的儿子, k ∈ K k\in K kK)
f i , j = { ∑ f k , 0 ( j = 1 ) ∑ max ⁡ ( f k , 0 , f k , 1 ) ( j = 0 ) f_{i,j}=\left\{ \begin{aligned} &\sum f_{k,0} &(j=1)\\ &\sum \max(f_{k,0},f_{k,1}) &(j=0)\\ \end{aligned} \right. fi,j=fk,0max(fk,0,fk,1)(j=1)(j=0)

代码

#include<bits/stdc++.h>
using namespace std;
int w[10001];
vector<int>num[10001];
int f[2][10001];
int n,m;
int fr,to;
int sum;
void dfs(int u){
	f[1][u]=w[u];
	for(int i=0;i<num[u].size();i++){
		dfs(num[u][i]); 
		f[1][u]+=f[0][num[u][i]];
		f[0][u]+=max(f[1][num[u][i]],f[0][num[u][i]]);
	}
	 return;
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d",&w[i]);
		sum^=i;
	}
	for(int i=1;i<=n-1;i++){
		scanf("%d%d",&to,&fr);
		sum^=to;
		num[fr].push_back(to);
	}
	num[0].push_back(sum);
	dfs(sum);
	printf("%d\n",max(f[0][sum],f[1][sum]));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值