2021.4.1 笨阶乘
题目描述
通常,正整数 n 的阶乘是所有小于或等于 n 的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1。
相反,我们设计了一个笨阶乘 clumsy:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。
例如,clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法和除法步骤,并且按从左到右处理乘法和除法步骤。
另外,我们使用的除法是地板除法(floor division),所以 10 * 9 / 8 等于 11。这保证结果是一个整数。
实现上面定义的笨函数:给定一个整数 N,它返回 N 的笨阶乘。
示例 1:
输入:4
输出:7
解释:7 = 4 * 3 / 2 + 1
示例 2:
输入:10
输出:12
解释:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
推导通项公式
对于地板除法(floor division)来说,除了3 x 2 / 1和4 x 3 / 2,其余的 (n + 2) x (n + 1) / n 都等于 n + 3,对于笨阶乘 除了开头的第一部分的乘除运算 (n + 2) x (n + 1) / n 会被中间的 + 运算约掉,举个例子 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1,其中 + 7 - 6 x 5 / 4约掉,其实只需要考虑最后一次 x 与 / 后面的运算,但需要注意的是如果是 4 3 2 或者 3 2 1 做乘除的话会有不同
由此,除了当 n 为 1 2 3 4 时的特殊情况,可以推出,当 n % 4 为 0 时,最终结果为 n + 1;为 1 或 2 时,最终结果为 n + 2;为 3 时,最终结果为 n - 1。
代码如下:
public int clumsy(int n) {
if(n == 1) return 1;
if(n == 2) return 2;
if(n == 3) return 6;
if(n == 4) return 7;
if(n % 4 == 0) return n + 1;
if(n % 4 == 3) return n - 1;
return n + 2;
}
波兰表达式解法
思路是用字符串保存完整表达式,再利用波兰表达式计算值,这里我用的是逆波兰表达式的解法。
代码如下:
public class PolandNotation {
public static void main(String[] args) {
PolandNotation p = new PolandNotation();
System.out.println(p.clumsy(10));
//
}
public int clumsy(int n){
String s = "";
int count = 0;
for(int i = n;i >= 1;i--){
if(i == 1)
s = s + "1";
else {
if(count % 4 == 0) s = s + i + "*";
if(count % 4 == 1) s = s + i + "/";
if(count % 4 == 2) s = s + i + "+";
if(count % 4 == 3) s = s + i + "-";
}
count++;
}
System.out.println(s);
return calculate(toInfix(s));
}
//计算后缀表达式
public int calculate(ArrayList<String> arr){
Stack<Integer> s1 = new Stack<>();
for(String s : arr){
if(s.matches("\\d+")){
s1.push(Integer.parseInt(s));
}else{
switch (s){
case "+":
s1.push(s1.pop() + s1.pop());
break;
case "-":
s1.push(-1 *(s1.pop() - s1.pop()));
break;
case "*":
s1.push(s1.pop() * s1.pop());
break;
case "/":
int num1 = s1.pop();
int num2 = s1.pop();
s1.push(num2 / num1);
break;
}
}
}
return s1.pop();
}
//将中缀表达式字符串转化为数组
public ArrayList<String> toArr(String str){
str = str.trim();
ArrayList<String> arr = new ArrayList<>();
for (int i = 0; i < str.length();) {
if(str.charAt(i) < 48 || str.charAt(i) > 57){ //如果是字符就直接添加
if(str.charAt(i) != ' ')
arr.add(str.charAt(i) + "");
i++;
}
if(str.charAt(i) >= 48 && str.charAt(i) <= 57){
StringBuilder s = new StringBuilder();
while(i < str.length() && str.charAt(i) >= 48 && str.charAt(i) <= 57 ){ //遇到数字的话拼接起来
s.append(str.charAt(i));
i++;
}
arr.add(s.toString());
}
}
return arr;
}
//将中缀表达式转换为字符串表达式
public ArrayList<String> toInfix(String str){
ArrayList<String> arr = toArr(str);
Stack<String> s1 = new Stack<>();
ArrayList<String> s2 = new ArrayList<>();
for(String s : arr){
if(s.matches("\\d+")){ //如果是数字直接入数字“栈”
s2.add(s);
}else if(isOperator(s)){ //如果是运算符
if (!s1.empty() && !s1.peek().equals("(") && (getPriority(s) <= getPriority(s1.peek()))) {
while (!s1.empty() && getPriority(s) <= getPriority(s1.peek())) {
s2.add(s1.pop());//如果当前运算符优先级比栈低,则将栈顶符号移至留一个”栈“
}
}
//如果符号栈为空或者栈顶元素,或者当前运算符优先级高于栈顶优先级,入栈
s1.push(s);
}else if(isBraces(s)){
if(s.equals("("))
s1.push(s);
else{
while(!s1.peek().equals("(")){
s2.add(s1.pop());
}
s1.pop();
}
}
}
while(!s1.empty()){
s2.add(s1.pop());
}
return s2;
}
//判断是不是运算符
public boolean isOperator(String s){
return s.equals("+") || s.equals("-") || s.equals("*") || s.equals("/");
}
//判断是不是括号
public boolean isBraces(String s){
return s.equals("(") || s.equals(")");
}
//获取运算符的优先级
public int getPriority(String s){
switch (s){
case "+":
case "-":
return 1;
case "*":
case "/":
return 2;
default:
return -1;
}
}
}