2021.4.2 直方图的水量
题目描述
给定一个直方图(也称柱状图),假设有人从上面源源不断地倒水,最后直方图能存多少水量?直方图的宽度为 1。
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的直方图,在这种情况下,可以接 6 个单位的水(蓝色部分表示水)。
示例:
输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6
思路
我采用的是暴力解法,即遍历每一个"直立方",讲其能装的单位水加起来,得出结果,每个立方能装的水和它的左右两边的最大值有关,需要求出两边的最大值,去两个之中较小的与当前的数值做差,代码如下:
public int trap(int[] num) {
int n = num.length;
int sum = 0;
int lMax;
int rMax;
for (int i = 1; i <= n - 2; i++) {//头尾两个立方显然无法装水,不需要考虑
lMax = 0;
rMax = 0;
for (int j = i - 1; j >= 0; j--) {
lMax = Math.max(lMax, num[j]);
}
for (int j = i + 1; j < n; j++) {
rMax = Math.max(rMax, num[j]);
}
if (rMax <= num[i] || lMax <= num[i]) continue;
sum += Math.min(rMax, lMax) - num[i];
}
return sum;
}
后来看到大佬的代码意识到可以优化,因为为每个立方求左右两把最大值时都需要遍历一次数组,显然重复了,可以建立一个数组,专门存放每个立方所对应的左右两边最大值之中较小的那个值,直接与当前值相减就行,代码如下:
public int trap(int[] height) {
if(height.length == 0) return 0;
int sum = 0;
int[] leftMax = new int[height.length];
int[] rightMax = new int[height.length];
leftMax[0] = height[0];
rightMax[height.length - 1] = height[height.length - 1];
for (int i = 1; i < height.length - 1; i++) {
leftMax[i] = Math.max(leftMax[i-1], height[i]);
}
for (int i = height.length - 2; i >= 0;i--) {
rightMax[i] = Math.max(rightMax[i + 1],height[i]);
}
for (int i = 1; i < height.length - 1; i++) {
int temp = Math.min(rightMax[i],leftMax[i]);
if(temp > height[i])
sum += temp - height[i];
}
return sum;
}