4月2号打卡

2021.4.2 直方图的水量

题目描述

给定一个直方图(也称柱状图),假设有人从上面源源不断地倒水,最后直方图能存多少水量?直方图的宽度为 1。
在这里插入图片描述
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的直方图,在这种情况下,可以接 6 个单位的水(蓝色部分表示水)。

示例:

输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6

思路

我采用的是暴力解法,即遍历每一个"直立方",讲其能装的单位水加起来,得出结果,每个立方能装的水和它的左右两边的最大值有关,需要求出两边的最大值,去两个之中较小的与当前的数值做差,代码如下:

    public int trap(int[] num) {
        int n = num.length;
        int sum = 0;
        int lMax;
        int rMax;
        for (int i = 1; i <= n - 2; i++) {//头尾两个立方显然无法装水,不需要考虑
            lMax = 0;
            rMax = 0;
            for (int j = i - 1; j >= 0; j--) {
                lMax = Math.max(lMax, num[j]);
            }
            for (int j = i + 1; j < n; j++) {
                rMax = Math.max(rMax, num[j]);
            }
            if (rMax <= num[i] || lMax <= num[i]) continue;
            sum += Math.min(rMax, lMax) - num[i];
        }
        return sum;
    }

后来看到大佬的代码意识到可以优化,因为为每个立方求左右两把最大值时都需要遍历一次数组,显然重复了,可以建立一个数组,专门存放每个立方所对应的左右两边最大值之中较小的那个值,直接与当前值相减就行,代码如下:

    public int trap(int[] height) {
        if(height.length == 0) return 0;
        int sum = 0;
        int[] leftMax = new int[height.length];
        int[] rightMax = new int[height.length];
        leftMax[0] = height[0];
        rightMax[height.length - 1] = height[height.length - 1];
        for (int i = 1; i < height.length - 1; i++) {
            leftMax[i] = Math.max(leftMax[i-1], height[i]);
        }
        for (int i = height.length - 2; i >= 0;i--) {
            rightMax[i] = Math.max(rightMax[i + 1],height[i]);
        }
        for (int i = 1; i < height.length - 1; i++) {
            int temp = Math.min(rightMax[i],leftMax[i]);
            if(temp > height[i])
                sum += temp - height[i];
        }
        return sum;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值