PaddleOCR训练自己的数据集(已踩坑windows10)

1.准备数据集

   

链接放在这里:PaddleOCR/README_ch.md at release/2.1 · PaddlePaddle/PaddleOCR · GitHub

down下来之后准备好自己的数据集  

这个crop_img文件夹是通过半自动化处理后把标注的东西截取保存的文件

接下来是PPOCRLabel的打标内容:

命令行附在下面:

cd ./PPOCRLabel #将目录先切换到PPOCRLabel下

python PPOCRLabel.py --lang ch

会出现自动打标的页面

 文件>打开目录>选择文件夹>左下角的自动标注

 注意! 因为是半自动化标注 所以还要依次检查一边 确认后点击右下角的确认按钮

 

 注意:如果识别或者标记不对的地方都需要自己改动

最后 点击 文件>保存标记结果>保存识别结果

接下来在你的源文件夹下可以看到生成了这些内容:

Cache.cach:保存的gt框的坐标

fileState.txt:类别标签

Label.txt:保存的gt框的坐标(一般用的都是这个)

rec_gt.txt:文本识别识别结果(对应的是文本识别)

踩坑1:  你的图片需要和这些.txt等文件是同一级目录

2.需要更改配置文件的参数

configs>det>det_mv3_db.yml 文件模型

踩坑2: 如果模型地址写错 会出现找不到 .pdparams的路径,也不需要加pdparams的后缀名

 这里是预训练模型

下载模型地址:

PaddleOCR/models_list.md at release/2.1 · PaddlePaddle/PaddleOCR · GitHub

 

 踩坑3:我是下载这一个,注意是训练模型 是负责训练你的数据 不是推理模型

data_dir 需要修改成自己的

label_file_list 自己标签的位置

踩坑4:  data_dir   不要写到自己的图片目录下  报错信息如下

 

 建议调成1,因为我的电脑带不起来16,8,4线程

输入命令: python tools/train.py -c configs/det/det_mv3_db.yml

出现这种就可以了

最后训练好可以在./output/db_mv3 下面的yml中查看训练的配置文件

这里是我训练完1200个批次后 生成的文件

需要将生成的转换成为infer文件 命令如下: 

python tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./output/db_mv3/iter
_epoch_1200 Global.save_inference_dir=./output/db_mv3_infer/

 这里转换后的infer文件

换成自己的infer文件 

看一下这里的检测效果

 这里的识别没有写,默认的是官网 可以看到准确率很高

3.模型的识别也是一样的流程

4.总结:

The ``path`` (G:/PaddleOCR-release-2.1/pretrain_models/MobileNetV3_large_x0_5_pretrained.pdparams) to loa d model not exists.‘’

出现这种错误 请看2步骤的踩坑2

后续的报错信息大家可以下面留言!误人子弟的地方希望及时指出 

要使用PaddleOCR训练自己的数据集,首先需要准备训练数据训练数据应包含两个主要部分:图像和对应的标注信息。图像是待识别的文本图像,标注信息是图像中文本的位置框和对应的文本内容。 接下来,需要将训练数据转换为PaddleOCR可接受的格式。可以使用LabelImg等工具对图像进行标注,并将标注信息保存为XML或JSON格式。然后使用PaddleOCR提供的脚本将标注信息转换为PaddleOCR所需的格式,如PaddleOCR提供的demo中的数据格式。 在数据准备好之后,需要配置PaddleOCR训练参数。可以通过修改PaddleOCR提供的训练配置文件来设置训练的参数,如网络结构、学习率等。 接下来,运行PaddleOCR训练脚本,开始训练自己的数据集。在训练过程中,PaddleOCR会使用标注信息进行模型的训练和优化。可以根据设定的训练轮数等参数来控制训练过程的长度。 训练完成后,可以使用训练好的模型对新的图像进行文本识别。可以使用PaddleOCR提供的预测脚本,将图像输入模型,得到文本识别结果。 需要注意的是,在整个训练过程中,可能需要对数据集进行多次的迭代和调优,才能得到较好的识别效果。可以根据实际情况进行反复训练和调整。 总之,使用PaddleOCR训练自己的数据集需要准备标注好的训练数据,配置训练参数,运行训练脚本,并反复迭代和调整,最终得到满意的文本识别模型。
评论 93
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝士是只猫

开源使得世界变得更美丽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值