合唱队形(最长上升子序列,DP)
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK, 则他们的身高满足T1<…Ti+1>…>TK(1≤i≤K)。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入格式
输入的第一行是一个整数N,表示同学的总数。
第二行有n个整数,用空格分隔,第i个整数Ti是第i位同学的身高(厘米)。
输出格式
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
数据范围
2≤N≤100
130≤Ti≤230
输入样例:
8
186 186 150 200 160 130 197 220
输出样例:
4
题解
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 280;
int a[N];
int dp1[N], dp2[N];
int n, ans;
int main(){
cin >> n;
for (int i = 0 ; i < n ; i ++) cin >> a[i];
for (int i = 0 ; i < n ; i ++){
for (int j = 0 ; j < i ; j ++){
if (a[i] > a[j]){
dp1[i] = max(dp1[i] , dp1[j] + 1);
}
}
}
for (int i = n - 1 ; i >= 0 ; i -- ){
for (int j = n - 1 ; j > i ; j -- ){
if (a[i] > a[j]){
dp2[i] = max(dp2[i], dp2[j] + 1);
}
}
}
for (int i = 0 ; i < n ; i ++) ans = max(ans, dp1[i] + dp2[i] + 1);
ans = n - ans;
cout << ans << endl;
return 0;
}
思路:
- 用DP的方法,类似于坐位体前屈,有的同学靠惯性把那根条子往前推一大段
dp1[i] = max(dp1[i] , dp1[j] + 1);
dp2[i] = max(dp2[i], dp2[j] + 1);
分别自左向右和自右向左,进行两层DP,即确定某一点时,可以找到它左边的最大降序子序列个数,也可以知道它右边的最大降序子序列个数
- 最后遍历,找到某一点的(左边最长降序个数+右边最长降序个数+自身个数1)取到最大值
for (int i = 0 ; i < n ; i ++) ans = max(ans, dp1[i] + dp2[i] + 1);