比例简化
在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果。
例如,对某一观点表示支持的有1498人,反对的有902人,那么赞同与反对的比例可以简单的记为1498:902。
不过,如果把调查结果就以这种方式呈现出来,大多数人肯定不会满意。
因为这个比例的数值太大,难以一眼看出它们的关系。
对于上面这个例子,如果把比例记为5:3,虽然与真实结果有一定的误差,但依然能够较为准确地反映调查结果,同时也显得比较直观。
现给出支持人数A,反对人数B,以及一个上限L,请你将A:B化简为A′:B′,要求A′和B′均不大于L且A′和B′互质(两个整数的最大公约数是1)的前提下,A′/B′≥A/B且A′/B′−A/B的值尽可能小。
输入格式
输入共一行,包含三个整数A,B,L,每两个整数之间用一个空格隔开,分别表示支持人数、反对人数以及上限。
输出格式
输出共一行,包含两个整数A′,B′,中间用一个空格隔开,表示化简后的比例。
数据范围
1≤A,B≤106
1≤L≤100,A/B≤L
输入样例:
1498 902 10
输出样例:
5 3
题解
#include <iostream>
#include <algorithm>
using namespace std;
double delta = 1e9;
int gcd(int a, int b){
return b ? gcd(b, a % b) : a;
}
int main(){
int A, B, L, a, b;
cin >> A >> B >> L;
for (int i = 1 ; i <= L ; i ++ ){
for (int j = 1 ; j <= L ; j ++ ){
double X = A * 1.0 / B;
double x = i * 1.0 / j;
if (gcd(i, j) == 1 && x >= X && x - X < delta){
a = i;
b = j;
delta = x - X;
}
}
}
cout << a << ' ' << b;
return 0;
}
- 终点就是,gcd,求两个整数的最大公约数!!!!(模板)
int gcd(int a, int b)
{
return b ? gcb(b, a % b) : a;
}