寒假每日一题题解(2.10)比例化简(gcd最大公约数模板)

比例简化

在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果。

例如,对某一观点表示支持的有1498人,反对的有902人,那么赞同与反对的比例可以简单的记为1498:902。

不过,如果把调查结果就以这种方式呈现出来,大多数人肯定不会满意。

因为这个比例的数值太大,难以一眼看出它们的关系。

对于上面这个例子,如果把比例记为5:3,虽然与真实结果有一定的误差,但依然能够较为准确地反映调查结果,同时也显得比较直观。

现给出支持人数A,反对人数B,以及一个上限L,请你将A:B化简为A′:B′,要求A′和B′均不大于L且A′和B′互质(两个整数的最大公约数是1)的前提下,A′/B′≥A/B且A′/B′−A/B的值尽可能小。

输入格式

输入共一行,包含三个整数A,B,L,每两个整数之间用一个空格隔开,分别表示支持人数、反对人数以及上限。

输出格式

输出共一行,包含两个整数A′,B′,中间用一个空格隔开,表示化简后的比例。

数据范围

1≤A,B≤106
1≤L≤100,A/B≤L

输入样例:
1498 902 10
输出样例:
5 3

题解

#include <iostream>
#include <algorithm>
using namespace std;

double delta = 1e9;

int gcd(int a, int b){
    return b ? gcd(b, a % b) : a;
}
int main(){
    int A, B, L, a, b;
    cin >> A >> B >> L;
    for (int i = 1 ; i <= L ; i ++ ){
        for (int j = 1 ; j <= L ; j ++ ){
            double X = A * 1.0 / B;
            double x = i * 1.0 / j;
            if (gcd(i, j) == 1 && x >= X && x - X < delta){
                a = i;
                b = j;
                delta = x - X;
            }
            
        }
    }
    cout << a << ' ' << b;
    
    
    return 0;
}
  • 终点就是,gcd,求两个整数的最大公约数!!!!(模板)
int gcd(int a, int b)
{
    return b ? gcb(b, a % b) : a;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值