【并查集】初步+模板

一.定义

并查集是一种用于维护集合的数据结构,主要支持两种操作:查找和合并。并查集通常用于解决连通性问题,例如判断图中两个节点是否连通,或者判断无向图是否有环等。

并查集维护的是一组不相交的集合,每个集合由若干个元素组成。每个元素都有一个代表元,代表元可以用来标识集合。初始时,每个元素都是一个单独的集合,代表元为自身。

并查集支持两种操作:

  1. 查找(Find):查找元素所属的集合,即找到该元素的代表元。

  2. 合并(Union):将两个集合合并成一个集合,即将其中一个集合的代表元指向另一个集合的代表元。

并查集可以使用数组或者树来实现。使用数组实现时,每个元素都有一个父节点,代表元的父节点指向自身。使用树实现时,每个元素都有一个父节点,代表元的父节点指向自身,非代表元的父节点指向其所在集合的代表元。

在实现并查集时,需要注意路径压缩和按秩合并两种优化方法。路径压缩是指在查找操作中,将路径上的所有节点的父节点都指向代表元,以减少后续查找的时间复杂度。按秩合并是指在合并操作中,将元素少的集合合并到元素多的集合中,以减少后续查找的时间复杂度。

二.例题导入 

描述:
      学校有n个同学,每个同学有且只有一个信仰,给出m对有同一信仰的同学,问存在多少种不同的信仰?(0 < n <= 50000), (0 <= m <= n(n-1)/2)
    

输入:

共m+1行,第一行两个整数n,m
接下来的m行表示有同一信仰的同学

输出:

一个整数,表示不同信仰的个数

输入示例:

10 4
2 3
4 5
4 8
5 8

输出示例:

7

三.分析 

我们可以想到,创建一个数组,令每一个学生先信仰自己。然后再通过后期操作,修改数组的value即可。

我们先拿样例举个例子:

10 4

2 3 ,4 5 ,4 8 ,5 8

 其实吧,挺好理解的,直接上代码

四.代码

#include<bits/stdc++.h>
using namespace std;
int fa[50005];//记录父节点 
int find(int a){
    if(a==fa[a]){ //如果a的父节点就是自身,说明a就是代表元素
        return a;
    }else{
        //否则递归查找a的父节点,并将结果记录在fa[a]中,实现路径压缩
        return fa[a]=find(fa[a]);
    }
}
void merge(int a,int b){
    int fx=find(a); //找a所在集合的代表元素
    int fy=find(b); //找b所在集合的代表元素
    fa[fy]=fx; //将b所在集合的代表元素的父节点指向a所在集合的代表元素
} 
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        fa[i]=i; //初始时每个节点都是一个单独的集合,父节点为自身
    } 
    for(int i=1;i<=m;i++){
        int a,b;
        cin>>a>>b;
        //合并的是a和b所在的集合
        int fx=find(a); //找a所在集合的代表元素
        int fy=find(b); //找b所在集合的代表元素
        if(fx!=fy){ //如果a和b不在同一个集合中
            merge(fx,fy); //将a所在集合和b所在集合合并
        } 
    } 
    int ans=0;
    for(int i=1;i<=n;i++){
        if(i==fa[i]){ //如果i的父节点就是自身,说明i就是代表元素
            ans++; //统计代表元素的个数,即连通块的个数
        }
    }
    cout<<ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值