一.定义
并查集是一种用于维护集合的数据结构,主要支持两种操作:查找和合并。并查集通常用于解决连通性问题,例如判断图中两个节点是否连通,或者判断无向图是否有环等。
并查集维护的是一组不相交的集合,每个集合由若干个元素组成。每个元素都有一个代表元,代表元可以用来标识集合。初始时,每个元素都是一个单独的集合,代表元为自身。
并查集支持两种操作:
-
查找(Find):查找元素所属的集合,即找到该元素的代表元。
-
合并(Union):将两个集合合并成一个集合,即将其中一个集合的代表元指向另一个集合的代表元。
并查集可以使用数组或者树来实现。使用数组实现时,每个元素都有一个父节点,代表元的父节点指向自身。使用树实现时,每个元素都有一个父节点,代表元的父节点指向自身,非代表元的父节点指向其所在集合的代表元。
在实现并查集时,需要注意路径压缩和按秩合并两种优化方法。路径压缩是指在查找操作中,将路径上的所有节点的父节点都指向代表元,以减少后续查找的时间复杂度。按秩合并是指在合并操作中,将元素少的集合合并到元素多的集合中,以减少后续查找的时间复杂度。
二.例题导入
描述:学校有n个同学,每个同学有且只有一个信仰,给出m对有同一信仰的同学,问存在多少种不同的信仰?(0 < n <= 50000), (0 <= m <= n(n-1)/2)输入:
共m+1行,第一行两个整数n,m 接下来的m行表示有同一信仰的同学输出:
一个整数,表示不同信仰的个数输入示例:
10 4 2 3 4 5 4 8 5 8输出示例:
7
三.分析
我们可以想到,创建一个数组,令每一个学生先信仰自己。然后再通过后期操作,修改数组的value即可。
我们先拿样例举个例子:
10 4
2 3 ,4 5 ,4 8 ,5 8
其实吧,挺好理解的,直接上代码
四.代码
#include<bits/stdc++.h>
using namespace std;
int fa[50005];//记录父节点
int find(int a){
if(a==fa[a]){ //如果a的父节点就是自身,说明a就是代表元素
return a;
}else{
//否则递归查找a的父节点,并将结果记录在fa[a]中,实现路径压缩
return fa[a]=find(fa[a]);
}
}
void merge(int a,int b){
int fx=find(a); //找a所在集合的代表元素
int fy=find(b); //找b所在集合的代表元素
fa[fy]=fx; //将b所在集合的代表元素的父节点指向a所在集合的代表元素
}
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
fa[i]=i; //初始时每个节点都是一个单独的集合,父节点为自身
}
for(int i=1;i<=m;i++){
int a,b;
cin>>a>>b;
//合并的是a和b所在的集合
int fx=find(a); //找a所在集合的代表元素
int fy=find(b); //找b所在集合的代表元素
if(fx!=fy){ //如果a和b不在同一个集合中
merge(fx,fy); //将a所在集合和b所在集合合并
}
}
int ans=0;
for(int i=1;i<=n;i++){
if(i==fa[i]){ //如果i的父节点就是自身,说明i就是代表元素
ans++; //统计代表元素的个数,即连通块的个数
}
}
cout<<ans;
return 0;
}