二分法——好斗的牛

本文介绍了一种农夫约翰为避免C头母牛互相攻击而设计谷仓的问题,目标是通过合理分配摊位,使得母牛之间的最小距离最大化。通过算法实现寻找最大最小距离,核心在于动态规划和区间划分的思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总时间限制: 1000毫秒 内存限制: 65536kB
描述
农夫约翰建造了一个新的长谷仓,其中有N个(2 <= N <= 100,000)摊位。档位沿直线位于位置x1,…,xN(0 <= xi <= 1,000,000,000)。

他的C(2 <= C <= N)头母牛不喜欢这种谷仓布局,一旦放到摊子里就会变得互相攻击。为了防止母牛互相伤害,FJ希望将母牛分配给摊位,以使它们之间的最小距离尽可能大。最大最小距离是多少?
输入
*第1行:两个以空格分隔的整数:N和C

*第2…N + 1行:第i + 1行包含整数停滞位置xi
输出
*第1行:一个整数:最大最小距离
样例输入
5 3
1个
2
8
4
9
样例输出
3

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int a[100010];
int can(int k,int n,int c);
int main()
{
	int n,c;
	scanf("%d%d",&n,&c);
	for(int i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
	}
	sort(a,a+n);
	int mm=1,nn=1e9/c,mid,result;
	while(mm<=nn){
		mid=(mm+nn)/2;
		if(can(mid,n,c)){
			result=mid;
			mm=mid+1;
		}else{
			nn=mid-1;
		}
	}
	printf("%d",result);
	return 0;
	
}
int can(int k,int n,int c){
	int x1=a[0];
	int c2=1;
	x1+=k;
	for(int i=1;i<n;i++){
		if(a[i]>=x1){
			c2++;
			x1=a[i]+k;//这里容易出错 不能直接写x1+=k!!!!!!!!!!!!!!!!!;
		}
		if(c2==c){
			return 1;
		}
	}
	return 0;
}```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值