java数据结构和算法——查找

优化二分查找

解决无法查找多个重复值的问题

public class BinarySearch {
    public static void main(String[] args) {
        int arr[] = { 1, 2, 3, 3, 3, 6, 7, 8, 8, 10, 12, 12, 13};
        List<Integer> resIndexList = binarySearch(arr, 0, arr.length - 1, 3);
        System.out.println("resIndexList=" + resIndexList);
    }

    // 优化二分查找算法
    /**
     *
     * @param arr
     *            数组
     * @param left
     *            左边的索引
     * @param right
     *            右边的索引
     * @param findVal
     *            要查找的值
     * @return 返回查到元素的下标的集合
     */

    public static List<Integer> binarySearch(int[] arr, int left, int right, int findVal) {

        // 当 left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) { // 向右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch(arr, left, mid - 1, findVal);
        } else {
            List<Integer> resIndexlist = new ArrayList<Integer>();
            //向mid 索引值的左边扫描,将所有满足条件的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while(true) {
                if (temp < 0 || arr[temp] != findVal) {//退出
                    break;
                }
                //否则,就temp 放入到 resIndexlist
                resIndexlist.add(temp);
                temp -= 1; //temp左移
            }
            resIndexlist.add(mid);

            //向mid 索引值的右边扫描,将所有满足条件的元素的下标,加入到集合ArrayList
            temp = mid + 1;
            while(true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
                    break;
                }
                //否则,就temp 放入到 resIndexlist
                resIndexlist.add(temp);
                temp += 1; //temp右移
            }

            return resIndexlist;
        }

    }
}

插值查找

公式:int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])

数组 arr = [1, 2, 3, …, 100]

假如我们需要查找的值 1

使用二分查找的话,我们需要多次递归,才能找到 1

使用插值查找算法

int mid = 0 + (99 - 0) * (1 - 1)/ (100 - 1) = 0 + 99 * 0 / 99 = 0

比如我们查找的值 100

int mid = 0 + (99 - 0) * (100 - 1) / (100 - 1) = 0 + 99 * 99 / 99 = 0 + 99 = 99

public class InsertValueSearch {
    public static void main(String[] args) {

        int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };

        int index = insertValueSearch(arr, 0, arr.length - 1, 1234);

        System.out.println("index = " + index);

    }

    public static int binarySearch(int[] arr, int left, int right, int findVal) {
        // 当 left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) { // 向 右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch(arr, left, mid - 1, findVal);
        } else {

            return mid;
        }

    }

    //编写插值查找算法
    //说明:插值查找算法,也要求数组是有序的
    /**
     *
     * @param arr 数组
     * @param left 左边索引
     * @param right 右边索引
     * @param findVal 查找值
     * @return 如果找到,就返回对应的下标,如果没有找到,返回-1
     */
    public static int insertValueSearch(int[] arr, int left, int right, int findVal) {

        System.out.println("插值查找次数~~");

        //注意:findVal < arr[0]  和  findVal > arr[arr.length - 1] 必须需要
        //否则我们得到的 mid 可能越界
        if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
            return -1;
        }

        // 求出mid, 自适应
        int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
        int midVal = arr[mid];
        if (findVal > midVal) { // 说明应该向右边递归
            return insertValueSearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 说明向左递归查找
            return insertValueSearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }

    }
}


斐波那契查找

斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列)。

  1. 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1。
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。

看注解细细体会

public class FibonacciSearch {
    public static int maxSize = 20;
    public static void main(String[] args) {
        int [] arr = {1,8, 10, 89, 1000, 1234};

        System.out.println("index=" + fibSearch(arr, 89));

    }

    //因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
    //非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    //编写斐波那契查找算法
    //使用非递归的方式编写算法
    /**
     *
     * @param a  数组
     * @param key 我们需要查找的关键码(值)
     * @return 返回对应的下标,如果没有-1
     */
    public static int fibSearch(int[] a, int key) {
        int low = 0;
        int high = a.length - 1;
        int k = 0; //表示斐波那契分割数值的下标
        int mid = 0; //存放mid值
        int f[] = fib(); //获取到斐波那契数列
        //获取到斐波那契分割数值的下标
        while(high > f[k] - 1) {
            k++;
        }
        //因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
        //不足的部分会使用0填充
        int[] temp = Arrays.copyOf(a, f[k]);
        //实际上需求使用a数组最后的数填充 temp
        //举例:
        //temp = {1,8, 10, 89, 1000, 1234, 0, 0}  => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
        for(int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }

        // 使用while来循环处理,找到我们的数 key
        while (low <= high) { // 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
                high = mid - 1;
                //为什么是 k--
                //说明
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                //即 在 f[k-1] 的前面继续查找 k--
                //即下次循环 mid = f[k-1-1]-1
                k--;
            } else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
                low = mid + 1;
                //为什么是k -=2
                //说明
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
                //4. 即在f[k-2] 的前面进行查找 k -=2
                //5. 即下次循环 mid = f[k - 1 - 2] - 1
                k -= 2;
            } else { //找到
                //需要确定,返回的是哪个下标
                if(mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值