- 博客(10)
- 收藏
- 关注
原创 Sim-to-Real Learning of All Common Bipedal Gaitsvia Periodic Reward Composition论文解读
本文提出了一种基于强化学习的双足机器人步态控制方法,旨在通过设计周期性的奖励函数,实现多种常见步态(如站立、行走、跳跃、奔跑等)的平滑切换。传统方法依赖于预设的参考轨迹,虽然能明确表达步态模式,但缺乏适应性。本文的创新点在于将步态分解为摆动(Swing)和站立(Stance)两个阶段,并分别设计奖励函数,允许或惩罚足部力反馈和速度。通过引入周期性奖励框架,结合时钟信号和相位偏移参数,实现了对不同步态的自然描述和灵活切换。实验表明,该方法在仿真中训练的策略能够无缝迁移至真实机器人Cassie,并成功实现多步态
2025-05-13 15:04:59
720
原创 视觉-语言模型:一文了解VLM的研究方向和发展前景
目前的视觉识别任务通常利用海量的标注数据训练一个深度神经网络,这导致了一个费力且耗时的视觉识别范式。随着语言模型的发展,视觉语言模型(VLM)最近得到了深入的研究。它可以利用互联网上无穷无尽的大规模数据实现模型的预训练,并能够在下游任务上实现高效的Zero-Shot预测。VLM目前的研究大致包含三方面:预训练、迁移学习和知识蒸馏。本文将从这三方面阐明VLM目前的发展以及未来的发展方向。
2025-04-14 14:28:31
764
原创 [专栏博客]MMDetection快速上手详细教程4——配置自己的数据集
上一期我们用coco数据介绍了mmdet的数据传递过程。在mmdet中,数据输入为coco格式,且使用coco指标对模型进行评价(COCO为最常用的,mmdet也包含VOC格式的读取和指标计算)。除了在科研中常用的coco数据集外,我们在科研和项目中还可能会用到其它非coco格式的数据集。在这篇博客中,我会提供两种方面coco标注文件的转换代码:1.xml转coco格式的json文件;2.yolo格式标注转coco格式的json文件。
2025-04-03 15:09:17
764
原创 [论文复现(附GitHub代码)]多模态知识扩展-ICCV2021
在GitHub中我提供了我使用的数据集的下载链接,由于RAVDESS包含视频数据导致文件较大我无法上传到网盘,大家可以自行下载数据集,这里我只使用了speech数据。我划分的训练集和测试集文件会在GitHub中提供。
2025-03-27 15:49:00
678
原创 强化学习数学原理学习笔记
个人对于强化学习的学习笔记,不一定是课程内容,不定期更新,有需要可以直接拷贝副本由于个人习惯用notion,所以这里只放notion的链接。
2025-03-24 15:52:35
503
原创 [专栏博客]MMDetection快速上手详细教程3——数据的前向传播
上一期中,我们对模型的config文件进行了介绍。在了解模型的构造之后,我们要了解数据如何在MMDetection中进行前向传播。
2025-03-12 20:25:08
1143
2
原创 LearnHumanoidWalking项目介绍
这一次主要介绍下项目代码的分类,以及关键的点.RL主要就是和环境的交互,与机器人结合起来,就是用仿真环境交互,多了一个机器人的控制.OK,对于这个项目的介绍,差不多就是这些.个人觉得这个项目非常适合作为一个入门强化学习+Mujoco的项目(或者在没有GPU的情况下).如果要用自己的模型去训练,那么就可以按照导入模型,修改obs\action\mirror空间,修改机器人参数(pd之类的),然后check下数据获取是否正确,修改好奖励函数,差不多就可以训练了。
2025-03-07 21:30:38
732
9
原创 [专栏博客]MMDetection快速上手详细教程2——模型配置文件
在上一期中,我们进行了环境的配置及测试。在测试中,我们修改了三个参数,其中model参数代表模型的配置文件,MMDetection利用配置文件中的配置来生成模型、优化器、dataloader等等。这期博客将详细介绍配置文件的组成。配置文件可以在mmdetection/configs/目录下找到。可以看到mmdetection集成了众多目标检测器以供使用。
2025-03-01 16:04:58
1263
原创 基于Mujoco强化学习机器人控制平台部署
LearningHumanoidWalking是一个基于Mujoco的机器人强化学习运动框架,本文主要介绍该框架的部署
2025-02-21 15:15:08
1050
16
原创 [专栏博客]MMDetection快速上手详细教程1——环境搭建
MMDetection是一个由商汤科技和香港中文大学MMLab实验室联合开发的一种基于Pytorch的目标检测开源项目。这个项目中集成了众多经典以及最新的目标检测器,包括一阶段、二阶段以及基于transformer的检测器。由于这个项目文件较为庞大且复杂,对于小白来说比较难上手。但是熟练使用之后,无论是工作需要使用自制数据集训练一个目标检测器,又或者是科研工作者需要修改模型印证自己的idea,他都是一个强大且实用的工具。接下来废话不多说,开始环境搭建的介绍。
2025-02-21 14:08:19
1417
4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人