层次分析法

层次分析法(AHP)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JYg2S4kF-1645026327946)(:/f61c57a4c9db4e6481dbf43001f8c9e0)]

对难以完全定量的复杂系统做出决策的模型和方法

步骤:
  1. 建立层次结构模型
  2. 构造判断(成对比较)矩阵
  3. 层次单排序及其一致性检验
  4. 层次总排序及其一致性检验

按照相互关系将决策的目标、考虑的因素(决策准测)和决策对象分出层次
最高层:决策的目的、要解决的问题
中间层:考虑的因素、决策的准则
最低层:决策时的备选方案
对相邻的两层,称高层为目标层,底层为因素层

成对比较(一致矩阵法)
解决定性确定权重不容易被人接受 成对比较矩阵使表示本层所有因素针对上一层某一个因素的相对重要性的比较 矩阵上的元素用1-9标度方法给出

  1. 不把所有因素放在一起比较,而是两两相互比较
  2. 对此事采用相对尺度,以尽可能减少性质不同的最因素相互比较的困难,以提高准确度

成对比较矩阵标度表

标度含义
1具有同样重要性
3稍微重要
5明显重要
7强烈重要
9极端重要
2 4 6 8上述两相邻判断的中值
倒数因素i与j比较的判断为aij,则j与i的比较aji=1/aij

成对比较的不一致情况:允许不一致,但要确定不一致的允许范围

一致性

定理一:n阶一致阵的唯一非零特征根为n
定理二:n阶正互反阵A的最大特征根λ≥n,当且仅当λ=n时A为一致阵
由于λ连续的依赖于aij,则λ比n大的越多,A的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ-n数值的大小来衡量A的不一致程度。

从理论上分析得到:如果A是完全一致的判断矩阵,应该有
在这里插入图片描述

但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。因此退而要求成对比较矩阵有一定的一致性,即可以允许成对比较矩阵存在一定程度的不一致性。

由分析可知,对完全一致的成对比较矩阵,其绝对值最大的特征值等于该矩阵的维数。对成对比较矩阵的一致性要求,转化为要求: 的绝对值最大的特征值和该矩阵的维数相差不大

一致性检验

利用一致性指标和一致性比率<0.1及随机一致性指标的数值表,对A进行检验的过程。
n阶一致阵的唯一非零特征根为n
定义一致性指标:
C I = ( λ − n ) / ( n − 1 ) CI=(λ-n)/(n-1) CI=(λn)/(n1)

当CI=0,有完全一致性
当CI越大,不一致越严重
为衡量CI的大小,引入随机一致性指标RI:
随即构造500个判断矩阵,得到500个一致性指标CI,由此可得到随机一致性指标公式:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YyMti7jN-1645026327949)(:/aef857f33ed545e78ffe6f5296f6119d)]

随机一致性指标RI结果如下
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fypqXEwU-1645026327951)(:/7d0d31b79dfe4ed49da1752fc11bfaac)]

定义一致性比率:
C R = C I / R I CR=CI/RI CR=CI/RI

一般的,当一致性比率CR<0.1时,认为A的不一致程度在容许范围内,有满意的一致性,通过一致性检验

正互反阵最大特征根和特征向量的简化计算

根法 和法 幂法


判断矩阵M是正互反阵,即满足以下条件:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eakT9fBG-1645026327952)(:/f14d012eeb4647d6953bbcfc7e6f36dc)]

进一步,精满足以下条件的正互反阵称为一致性矩阵
在这里插入图片描述

直观的理解:如果i对j的重要程度是a,j对k的重要程度是b,那么i对k的重要程度应该a*b,类似于传递性。

一致性矩阵具有如下性质:若一致性矩阵R的最大特征值λmax对应的特征向量为
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V5TC28NC-1645026327955)(:/a688b3dcb792452c88f01409462f87f2)]

结合判断矩阵的构建可知aij表示因素i相对于因素j的重要性,而aij=wi/wj,因此可以将wi与wj分别作为因素i与因素j的绝对重要性,也即因素i与因素j的权重,从而W即为各因素的权重向量。还须对向量W进行归一化处理:每个权重除以权重和作为自己的值,最终总和为1。


层次总排序的一致性比率
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-J8YLyGcM-1645026327955)(:/b2f9cb3807384223bb0fa32c35b9cb17)]

当CR<0.1时,认为层次总排序通过一致性检验。层次总排序具有满意的一致性,否则需要重新调整那些一致性比率高的判断矩阵的元素取值

disp('请输入判断矩阵A(n阶)');
A=input('A=');
[n,n]=size(A);
x=ones(n,100);
y=ones(n,100);
m=zeros(1,100);
m(1)=max(x(:,1));
y(:,1)=x(:,1);
x(:,2)=A*y(:,1);
m(2)=max(x(:,2));
y(:,2)=x(:,2)/m(2);
p=0.0001;i=2;k=abs(m(2)-m(1));
while  k>p
  i=i+1;
  x(:,i)=A*y(:,i-1);
  m(i)=max(x(:,i));
  y(:,i)=x(:,i)/m(i);
  k=abs(m(i)-m(i-1));
end
a=sum(y(:,i));
w=y(:,i)/a;
t=m(i);
disp(w);
         %以下是一致性检验
CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
CR=CI/RI(n);
if CR<0.10
    disp('此矩阵的一致性可以接受!');
    disp('CI=');disp(CI);
    disp('CR=');disp(CR);
end

层次分析法,成对比较矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值