线性代数笔记

本文详细介绍了线性代数中的关键概念,包括矩阵的行列式、秩、线性方程组的解的判定定理、向量的线性相关性和特征值与特征向量。矩阵的秩可以通过行阶梯形矩阵来求解,线性方程组的解的判定定理提供了解的条件。同时,探讨了向量的内积、模和夹角,以及特征值和特征向量的性质。
摘要由CSDN通过智能技术生成

方阵的行列式

满足以下运算规律:

1. ∣ A T ∣ = ∣ A ∣ |A^{T}|=|A| AT=A
2. ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda ^{n}|A| λA=λnA
3.####### ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ B A ∣ |AB|=|A||B|=|BA| AB=AB=BA######
4. ∣ A B ∣ = 0 |AB|=0 AB=0 ∣ A ∣ = 0 |A|=0 A=0 ∣ B ∣ = 0 |B|=0 B=0

矩阵的秩

定义

k阶子式定义:
A是一个 m × n m\times n m×n阶矩阵,取它的k行与k列(k指的是个数,k大于等于且不超过m,n的大小),位于这些行列交叉处的 k 2 k^{2} k2个元素,不改变它们在A中的位置次序而得到k阶行列式,称为矩阵A的k阶子式

例子:
A = [ 1 2 3 4 5 6 7 8 9 ] (1) A= \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{1} A=147258369(1)
取第1,2行和1,3列的交叉点上的元,组成的A的一个2阶行列式
[ 1 3 4 6 ] (2) \left[ \begin{matrix} 1 & 3 \\ 4& 6 \end{matrix} \right]\tag{2} [1436](2)

设矩阵A中有一个不等于0的r阶子式D,而所有r+1阶子式(若存在的话)全等于0,那么称D为矩阵A的一个最高阶非零子式,数r称为矩阵A都秩,记作R(A),并规定零矩阵的秩为0

注意

1.矩阵A的秩R(A)是A中不等于零的子式的最高阶数
2. R ( A T ) = R ( A ) R(A^{T})=R(A) R(AT)=R(A)
3.任意矩阵A,R(A)是唯一的,但其最高阶非零子式一般是不唯一的

如何求秩

显然,当行列数较高时,按照定义求秩很繁琐
但是对于行阶梯形矩阵,它的秩就等于非零行的行数
因此,用初等变换把矩阵化为阶梯形矩阵

备注:

行阶梯形矩阵
1.A若有零行,则零行都在非零行下边
2.非零行的非零首元(自左)的列标随行标的递增而严格递增

A = [ 1 0 − 1 0 2 4 0 0 3 ] (3) A= \left[ \begin{matrix} 1 & 0& -1\\ 0 & 2& 4 \\ 0& 0& 3 \end{matrix} \right]\tag{3} A=100020143(3)
行最简形矩阵
行阶梯形矩阵的前提下:
1.非零首元为1
2.非零首元所在列的其余元素全为0
A = [ 1 0 − 1 0 1 4 0 0 0 ] (4) A= \left[ \begin{matrix} 1 & 0& -1\\ 0 & 1& 4 \\ 0& 0& 0 \end{matrix} \right]\tag{4} A=100010140(4)
标准形
对行最简形矩阵进行初等列变换
F = [ E r O O O ] m × n (5) F= \left[ \begin{matrix} E_{r} & O\\ O & O \end{matrix} \right]_{m\times n}\tag{5} F=[ErOOO]m×n(5)
F = [ 1 0 0 0 1 0 0 0 0 ] (6) F= \left[ \begin{matrix} 1 & 0& 0\\ 0 & 1& 0 \\ 0& 0& 0 \end{matrix} \right]\tag{6} F=100010000(6)
定理:矩阵的初等变换不改变矩阵的秩
证明见书

由此:求矩阵的秩,只需把矩阵用初等行变换变成行阶梯形,其非零行的行数(台阶数)就是该矩阵的秩

线性方程组解的判定定理

之前用高斯消元法或者Ax=b求A的逆矩阵方法求解过,但是无法解决方程有无解且有解时有多少个的问题
线性方程组的解无非三种可能:唯一解,无解,无穷解

1.唯一解

{ 2 x 1 + 2 x 2 + 3 x 3 = 1 x 1 − x 2 = 2 − x 1 + 2 x 2 + x 3 = − 2 \left\{\begin{aligned}2x_{1}+2x_{2}+3x_{3}&=1\\ x_{1}-x_{2}&=2\\ -x_{1}+2x_{2}+x_{3}&=-2 \end{aligned}\right. 2x1+2x2+3x3x1x2x1+2x2+x3=1=2=2

A ~ = ( A ⋮ b ) = [ 2 2 3 ⋮ 1 1 − 1 0 ⋮ 2 − 1 2 1 ⋮ − 2 ] (7) \tilde{A}=(A\vdots b)= \left[ \begin{matrix} 2& 2& 3&\vdots&1\\ 1 & -1& 0&\vdots&2 \\ -1& 2& 1&\vdots&-2 \end{matrix} \right]\tag{7} A~=(Ab)=211212301122(7)
进行行初等变换后得
[ 1 0 0 ⋮ − 1 0 1 0 ⋮ − 3 0 0 1 ⋮ 3 ] (8) \left[ \begin{matrix} 1& 0& 0&\vdots&-1\\ 0 &1& 0&\vdots&-3 \\ 0& 0& 1&\vdots&3 \end{matrix} \right]\tag{8} 100010001133(8)

{ x 1 = − 1 x 2 = − 3 x 3 = 3 \left\{\begin{aligned}x_{1}&=-1\\ x_{2}&=-3\\ x_{3}&=3 \end{aligned}\right. x1x2x3=1=3=3

于是可得原方程有唯一解,可以看出 R ( A ) = R ( A ~ ) R(A)=R(\tilde{A}) R(A)=R(A~)

以此由例子类推得

线性方程组解的判定定理:
线性方程组 A x = b Ax=b Ax=b有解的充要条件是 R ( A ) = R ( A ~ ) R(A)=R(\tilde{A}) R(A)=R(A~)

1. R ( A ) = R ( A ~ ) < n R(A)=R(\tilde{A})<n R(A)=R(A~)<n时,无穷多解
2. R ( A ) = R ( A ~ ) = n R(A)=R(\tilde{A})=n R(A)=R(A~)=n时,唯一解
n为未知数的个数

A x = b Ax=b Ax=b无解的充要条件 R ( A ) ≠ R ( A ~ ) R(A)\neq R(\tilde{A}) R(A)=R(A~)

推论:
1.齐次线性方程组 A x = O Ax=O Ax=O一定有零解,即一定有解,因为肯定有 R ( A ) = R ( A ~ ) R(A)=R(\tilde{A}) R(A)=R(A~)
R ( A ) = n R(A)=n R(A)=n,则只有零解
R ( A ) < n R(A)<n R(A)<n,则有非零解
2.齐次线性方程组 A x = O Ax=O Ax=O中方程的个数小于未知数的个数,即m<n,则它必有非零解;
若m=n,则它有非零解的充要条件是 ∣ A ∣ = 0 |A|=0 A=0(因为 ∣ A ∣ = 0 |A|=0 A=0,即系数行列式不等于0才无解或有两个以上不同的解,克拉默法则)

n维向量与线性方程组

n维向量:( a 1 , a 2 , ⋯   , a n a_{1},a_{2},\cdots,a_{n} a1,a2,,an),其中的一个叫做分量

行向量 a T \pmb{a^{T}} aTaTaT=( a 1 , a 2 , ⋯   , a n a_{1},a_{2},\cdots,a_{n} a1,a2,,an)

列向量 a = [ a 1 a 2 ⋮ a n ] \pmb{a}=\left[ \begin{matrix} a_{1}\\ a_{2}\\ \vdots\\ a_{n} \end{matrix} \right] aaa=a1a2an

一般无特别说明向量均为列向量,且n维行向量和列向量总被看成是两个不同的向量

向量组:若干个同维数的列向量(行向量)所组成的集合

R n \pmb{R^{n}} RnRnRn:所有n维实向量构成的集合,集合 R n \pmb{R^{n}} RnRnRn对所定义的加法和数乘构成n维实向量空间其中的向量对加法和数乘封闭

向量的线性相关性

矩阵的特征值与特征向量

n维向量的内积

a = [ a 1 a 2 ⋮ a n ] , β = [ b 1 b 2 ⋮ b n ] \pmb{a}=\left[ \begin{matrix} a_{1}\\ a_{2}\\ \vdots\\ a_{n} \end{matrix} \right],\pmb{\beta }=\left[ \begin{matrix} b_{1}\\ b_{2}\\ \vdots\\ b_{n} \end{matrix} \right] aaa=a1a2anβββ=b1b2bn
a \pmb{a} aaa, β \pmb{\beta} βββ的内积:

( a , β ) = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + ⋯ + a n b n (\pmb{a},\pmb{\beta})=\sum_{i=1}^{n} a_{i}b_{i}=a_{1}b_{1}+a_{2}b_{2}+\cdots+a_{n}b_{n} (aaa,βββ)=i=1naibi=a1b1+a2b2++anbn

也可把向量看成是列(行)矩阵:

( a , β ) = ( a 1 , a 2 , ⋯   , a n ) ( b 1 b 2 ⋮ b n ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n = a T β (\pmb{a},\pmb{\beta})=(a_{1},a_{2},\cdots,a_{n})\left( \begin{matrix} b_{1}\\ b_{2}\\ \vdots\\ b_{n} \end{matrix} \right)=a_{1}b_{1}+a_{2}b_{2}+\cdots+a_{n}b_{n}=\pmb{a}^{T}\pmb{\beta} (aaa,βββ)=(a1,a2,,an)b1b2bn=a1b1+a2b2++anbn=aaaTβββ

内积性质:
(1) 对称性: ( a , β ) = ( β , a ) (\pmb{a},\pmb{\beta})=(\pmb{\beta},\pmb{a}) (aaa,βββ)=(βββ,aaa)
(2) 线形性: ( a + β , γ ) = ( a , γ ) + ( β , γ ) , ( k a , β ) = k ( a , β ) (\pmb{a}+\pmb{\beta},\pmb{\gamma})=(\pmb{a},\pmb{\gamma})+(\pmb{\beta},\pmb{\gamma}),(k\pmb{a},\pmb{\beta})=k(\pmb{a},\pmb{\beta}) (aaa+βββ,γγγ)=(aaa,γγγ)+(βββ,γγγ),(kaaa,βββ)=k(aaa,βββ)
(3) 正定性: ( a , a ) (\pmb{a},\pmb{a}) (aaa,aaa)

n维向量的模(范数)

∣ ∣ a ∣ ∣ = ( a , a ) = a T a = a 1 2 + a 2 2 + ⋯ + a n 2 ||\pmb{a}||=\sqrt{(\pmb{a},\pmb{a})}=\sqrt{\pmb{a^{T}}\pmb{a}}=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}} aaa=(aaa,aaa) =aTaTaTaaa =a12+a22++an2

性质:
(1)正定性: ∣ ∣ a ∣ ∣ ≥ 0 ||\pmb{a}||\geq 0 aaa0,当且仅当 a = 0 时 , ∣ ∣ a ∣ ∣ = 0 \pmb{a}=0时,||\pmb{a}||=0 aaa=0aaa=0

(2)齐次性: ∣ ∣ k a ∣ ∣ = ∣ k ∣ ∣ ∣ a ∣ ∣ ||k\pmb{a}||=|k|||\pmb{a}|| kaaa=kaaa

(3)三角不等式: ∣ ∣ a + β ∣ ∣ ≤ ∣ ∣ a ∣ ∣ + ∣ ∣ β ∣ ∣ ||\pmb{a}+\pmb{\beta}||\leq ||\pmb{a}||+||\pmb{\beta}|| aaa+βββaaa+βββ

(4)柯西-施瓦茨不等式: ( a , β ) 2 ≤ ( a , a ) ( β , β ) (\pmb{a},\pmb{\beta})^{2}\leq (\pmb{a},\pmb{a})(\pmb{\beta},\pmb{\beta}) (aaa,βββ)2(aaa,aaa)(βββ,βββ) ( a , β ) 2 ≤ ∣ ∣ a ∣ ∣ 2 ∣ ∣ β ∣ ∣ 2 (\pmb{a},\pmb{\beta})^{2}\leq||\pmb{a}||^{2}||\pmb{\beta}||^{2} (aaa,βββ)2aaa2βββ2

(4)证明:

n维向量的夹角

( a , β ) ^ = θ = a r c c o s ( a , β ) ∣ ∣ a ∣ ∣ ∣ ∣ β ∣ ∣ , 0 ≤ θ ≤ π \hat{(\pmb{a},\pmb{\beta})}=\theta=arccos\frac{(\pmb{a},\pmb{\beta})} {||\pmb{a}|| ||\pmb{\beta}||},0\leq\theta\leq\pi (aaa,βββ)^=θ=arccosaaaβββ(aaa,βββ),0θπ

正交向量组与标准正交向量组

特征值与特征向量

A \pmb{A} AAA为n阶方阵,n维非零向量 x x x,使得 A x = λ x \pmb{A}x=\lambda x AAAx=λx
则称 λ \lambda λ为方阵 A \pmb{A} AAA的特征值, x x x为特征向量

特征方程:

A x = λ x \pmb{A}x=\lambda x AAAx=λx可写成 ( A − λ E ) x = 0 (\pmb{A}-\lambda\pmb{E})x=0 (AAAλEEE)x=0

此方程为n个未知量的n个方程的齐次线性方程组

有非零解的充分必要条件:系数行列式 ∣ A − λ E ∣ = 0 ( 是 行 列 式 为 零 ) |\pmb{A}-\lambda\pmb{E}|=0(是行列式为零) AAAλEEE=0(

∣ a 11 − λ a 12 ⋯ a 1 n a 12 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ = 0 \left| \begin{matrix} a_{11}-\lambda& a_{12}&\cdots&a_{1n}\\ a_{12} &a_{22}-\lambda& \cdots&a_{2n} \\ \vdots& \vdots& &\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}-\lambda \end{matrix} \right|=0 a11λa12an1a12a22λan2a1na2nannλ=0

λ \lambda λ为未知量的一元n次方程,为方阵 A \pmb{A} AAA特征方程

∣ A − λ E ∣ |\pmb{A}-\lambda\pmb{E}| AAAλEEE是关于 λ \lambda λ的n次多项式,为 A \pmb{A} AAA特征多项式记为 f ( λ ) f(\lambda) f(λ)

因此n阶方阵有n个特征值

特征值有一下性质:

(1) λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=a_{11}+a_{22}+\cdots+a_{nn} λ1+λ2++λn=a11+a22++ann

(2)############ λ 1 λ 2 ⋯ λ n = ∣ A ∣ \lambda_{1}\lambda_{2}\cdots\lambda_{n}=|\pmb{A}| λ1λ2λn=AAA#############

x = p i x=p_{i} x=pi是特征向量

性质:
(1) p p p是对应于特征值 λ \lambda λ , k p kp kp也是特征向量

(2) p 1 , p 2 , ⋯   , p r p_{1},p_{2},\cdots,p_{r} p1,p2,,pr是对应 λ \lambda λ的特征向量,则 k 1 p 1 + k 2 p 2 + ⋯ + k r p r k_{1}p_{1}+k_{2}p_{2}+\cdots+k_{r}p_{r} k1p1+k2p2++krpr也是对应 λ \lambda λ的特征向量

特征子空间

方阵 A A A对应于特征值 λ \lambda λ的特征子空间
V λ = { x ∣ A x = λ x , x ∈ R n } V_{\lambda}=\lbrace x|Ax=\lambda x,x \in R^{n}\rbrace Vλ={xAx=λx,xRn}

相似矩阵

设n阶矩阵 A , B A,B A,B,如果存在可逆矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B
则称矩阵 A A A B B B相似,记作 A A A~ B B B
上述左式子称为对 A A A进行相似变换

定理: 相似矩阵有相同的特征多项式,从而有相同的特征值

证明:

推论: 若n阶矩阵 A A A与对角矩阵

Λ = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) = ∣ λ 1 λ 2 ⋱ λ n ∣ \Lambda=diag(\lambda_{1},\lambda_{2},\cdots,\lambda_{n})=\left| \begin{matrix} \lambda_{1}& &&\\ &\lambda_{2}& &\\ & &\ddots &\\ &&&\lambda_{n} \end{matrix} \right| Λ=diag(λ1,λ2,,λn)=λ1λ2λn

相似,则 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn就是 A A A的n个特征值

证明:
通过该推论可以快速计算 A k , A A^{k},A Ak,A的多项式

矩阵的相似对角化

P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ A A A可对角化

实对称矩阵

二次型

矩阵的迹

矩阵的迹和秩是完全不同的概念

矩阵的迹:

定义为n阶矩阵的对角元素之和,记为tr(A)

重要性质:tr(UV)=tr(VU)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值