确保接口幂等性:Redisson 的分布式锁与布隆过滤器的应用

前言

在微服务架构下,上游系统与下游系统之间进行交易时,如何保证交易操作的幂等性是一个至关重要的问题。作为中间系统,我们的责任是确保交易请求的唯一性,防止同一交易请求被多次执行,从而导致数据的不一致或重复交易。在这个场景下,我们通常会借助 Redis 的分布式锁和布隆过滤器来实现接口的幂等性。

什么是接口幂等性?

幂等性是指接口在多次调用的情况下,得到的结果是一致的,即无论接口调用多少次,返回的结果应该是相同的。对于交易系统而言,接口幂等性至关重要,因为交易一旦被执行多次,可能导致用户重复扣款、重复发送消息等问题。

需求背景

在我们这个中间系统中,负责处理来自上游系统的交易请求,并将请求转发到下游系统进行处理。交易操作需要遵循以下流程:

  1. 接收交易请求:接收到上游系统的交易请求,包含 uid 和交易信息。
  2. 判断交易请求是否已处理:通过 uid 判断该交易是否已经处理过。如果已处理,则不重复处理;如果未处理,则进行后续操作。
  3. 执行交易:调用下游系统接口进行交易处理。
  4. 返回结果:返回交易处理的结果。

在这个流程中,确保交易请求的幂等性是至关重要的。为了防止同一请求被多次执行,我们可以使用 Redis 分布式锁和布隆过滤器来实现幂等性控制。

1. Redisson 分布式锁

什么是 Redisson?

Redisson 是一个 Redis 客户端,提供了丰富的分布式数据结构,其中包括分布式锁、分布式集合、分布式队列等。它在性能和易用性上都表现得非常出色,适用于分布式应用的场景。

为什么使用 Redisson 分布式锁?

在分布式系统中,多个节点并发处理相同的请求时,可能会导致重复处理同一个交易。为了确保同一时间内只有一个节点能处理某个请求,我们需要一个锁来串行化请求。Redisson 提供了分布式锁机制,可以保证在多个 Redis 客户端间获取锁的唯一性。

Redisson 提供了 getLock 方法,可以轻松地实现分布式锁。

Redisson 分布式锁的实现

通过 uid 作为锁的唯一标识,我们可以确保同一 uid 的请求只会被处理一次。以下是使用 Redisson 实现分布式锁的代码示例:

import org.redisson.api.RedissonClient;
import org.redisson.api.RLock;
import org.redisson.Redisson;
import org.redisson.config.Config;

public class TransactionService {

    private RedissonClient redissonClient;
    private BloomFilter bloomFilter;

    public TransactionService(RedissonClient redissonClient) {
        this.redissonClient = redissonClient;
        this.bloomFilter = new BloomFilter(1000000, 0.01);  // 初始化布隆过滤器
    }

    public void processTransaction(String uid, String transactionData) {
        // 检查布隆过滤器,判断交易是否已经处理过
        if (bloomFilter.test(uid)) {
            System.out.println("Transaction already processed");
            return;
        }

        // 获取分布式锁
        RLock lock = redissonClient.getLock("lock:transaction:" + uid);

        try {
            // 尝试获取锁
            if (lock.tryLock()) {
                try {
                    // 执行交易处理
                    performTransaction(transactionData);
                    System.out.println("Transaction processed successfully");

                    // 将 uid 添加到布隆过滤器中,防止重复处理
                    bloomFilter.add(uid);

                } finally {
                    // 释放锁
                    lock.unlock();
                }
            } else {
                System.out.println("Transaction already being processed");
            }
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
            System.err.println("Transaction processing interrupted");
        }
    }

    private void performTransaction(String transactionData) {
        // 执行交易的具体逻辑,例如调用下游系统接口等
        System.out.println("Performing transaction with data: " + transactionData);
    }
}

关键点:

  • 使用 getLock("lock:transaction:" + uid) 创建一个唯一的锁,防止多个节点同时处理相同的交易。
  • lock.tryLock() 尝试获取锁,成功获取后继续执行交易处理逻辑,失败则表示该请求正在被其他节点处理。
  • 在处理完交易后,释放锁 lock.unlock()

2. 布隆过滤器

什么是布隆过滤器?

布隆过滤器(Bloom Filter)是一种高效的概率型数据结构,用于检测元素是否在集合中。它具有如下特点:

  • 高效:查找操作非常快速,且内存占用小。
  • 有误判:可能会误判某个元素存在,但绝不会漏判。

在交易场景中,布隆过滤器可以用来判断某个 uid 是否已经处理过。如果已经处理过,表示该交易请求已经执行过,可以跳过;如果没有处理过,则继续执行交易,并将 uid 添加到布隆过滤器中。

布隆过滤器的实现

import org.redisson.api.RedissonClient;

public class BloomFilter {

    private Set<String> filter;

    public BloomFilter(int capacity, double errorRate) {
        // 这里是一个简化版的布隆过滤器实现,实际应用中可以使用 Redis 自带的布隆过滤器等工具
        filter = new HashSet<>();
    }

    public boolean test(String uid) {
        // 判断元素是否存在
        return filter.contains(uid);
    }

    public void add(String uid) {
        // 向布隆过滤器中添加元素
        filter.add(uid);
    }
}

 

关键点:

  • 每次处理交易请求时,首先检查布隆过滤器中是否存在该 uid
  • 如果存在,跳过交易;如果不存在,则继续处理,并将 uid 添加到布隆过滤器中。

3. 综合应用:Redisson 分布式锁 + 布隆过滤器

结合 Redisson 的分布式锁和布隆过滤器,我们可以实现高效且安全的交易幂等性控制。具体实现流程如下:

  1. 检查布隆过滤器:判断该 uid 是否已经处理过,如果已处理,则直接返回。
  2. 获取分布式锁:如果布隆过滤器没有检测到该 uid,则尝试获取分布式锁,保证同一 uid 的交易请求不会被多次处理。
  3. 执行交易:在获取锁后,执行交易处理逻辑,并将 uid 添加到布隆过滤器中,防止重复处理。
  4. 释放锁:交易处理完成后,释放锁,允许其他节点处理后续请求。

4. 总结

通过结合使用 Redisson 的分布式锁布隆过滤器,我们能够高效地确保交易接口的幂等性,防止重复交易:

  • Redisson 分布式锁:确保在分布式环境中,同一 uid 的请求不会被并发处理,避免了数据不一致性。
  • 布隆过滤器:通过快速判断 uid 是否已经处理过,减少了不必要的数据库或缓存查询,提高了系统的性能。

概要介绍: 本课程主要是介绍并实战一款java中间件~redisson,介绍redisson相关的核心技术栈及其典型的应用场景,其中的应用场景就包括布隆过滤器、限流器、短信发送、实时/定时邮件发送、数据字典、分布式服务调度等等,在业界号称是在java项目里正确使用redis的姿势。本课程的目标就在于带领各位小伙伴一起学习、攻克redisson,更好地巩固自己的核心竞争力,而至于跳槽涨薪,自然不在话下!  课程内容: 说起redisson,可能大伙儿不是很熟悉,但如果说起redis,想必肯定很多人都晓得。没错,这家伙字如其名,它就是架设在redis基础上的一款综合性的、新型的中间件,号称是java企业级应用开发中正确使用redis的姿势/客户端实例。 它是架设在redis基础之上,但拥有的功能却远远多于原生Redis 所提供的,比如分布式对象、分布式集合体系、分布式锁以及分布式服务调度等一系列具有分布式特性的对象实例… 而这些东西debug将在本门课程进行淋漓尽致的介绍并实战,除此之外,我们将基于spring boot2.0搭建的多模块项目实战典型的应用场景:对象存储、数据字典、短信发送、实时/定时邮件发送、布隆过滤器、限流组件、分布式服务调度....课程大纲如下所示: 下面罗列一下比较典型的核心技术栈及其实际业务场景的实战,如下图所示为redisson基于订阅-发布模式的核心技术~主题Topic的实际业务场景,即实时发送邮件: 而下图则是基于“多值映射MultiMap”数据结构实战实现的关于“数据字典”的缓存管理: 除此之外,我们还讲解了可以分布式服务调度中间件dubbo相媲美的功能:分布式远程服务调度,在课程中我们动手搭建了两个项目,用于分别充当“生产者”“消费者”角色,最终通过redisson的“服务调度组件”实现服务服务之间、接口接口之间的调用!  课程收益: (1)认识并掌握redisson为何物、常见的几种典型数据结构-分布式对象、集合、服务的应用及其典型应用场景的实战; (2)掌握如何基于spring boot2.0整合redisson搭建企业级多模块项目,并以此为奠基,实战企业级应用系统中常见的业务场景,巩固相应的技术栈! (3)站在项目管理技术精进的角度,掌握对于给定的功能模块进行业务流程图的绘制、分析、模块划分、代码实战性能测试和改进,提高编码能力其他软实力; (4)对于Java微服务、分布式、springboot精进者而言,学完本课程,不仅可以巩固提高中间件的实战能力,其典型的应用场景更有助于面试、助力相关知识点的扫盲! 如下图所示: 关键字:Spring Boot,Redis,缓存穿透,缓存击穿,缓存雪崩,红包系统,Mybatis,高并发,多线程并发编程,发送邮件,列表List,集合Set,排行榜,有序集合SortedSet,哈希Hash ,进阶实战,面试,微服务、分布式 适用人群:redisson学习者,分布式中间件实战者,微服务学习者,java学习者,spring boot进阶实战者,redis进阶实战者
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值