codeforces 1424 G&J

1424G
题意:有n个人,每个人都有出生和死亡时间,求存活人数最多的年份,
以及存活人数;
题解:假如一个人在b—d-1存活,在b——d-1标记成1,这里可以使用差分数组,给一个区间进行加减;由于年份可能非常大,因此使用map存储;

#include <iostream>
#include <algorithm>
#include <map>
using namespace std;
#define x first
#define y second
int main(){
	int n;
	cin>>n;
	int b,d;
	map<int,int> mp;
	for(int i=1;i<=n;i++){
		cin>>b>>d;
		mp[b]++;
		mp[d]--;
	}
	int year;
	int sum=0,ans=0;
	for(auto i:mp){
		sum+=i.y;//前缀和;
		if(ans<sum){
			ans=sum;
			year=i.x;
		}
	}
	cout<<year<<' '<<ans<<endl;
	return 0;
}

1424J
题意:
假如两个不同数字a,b,使得gcd(a,b) ,a/gcd(a,b) ,b/gcd(a,b)这三个能够组成一个三角形,则称这两个数是友好的;
找1~n中与任何一个数都不友好的数的个数;
题解:
首先考虑两个质数,gcd(a,b)=1,则要求a,b,1,组成一个三角形,因为a,b互质,所以a,b至少相差1,所以两个质数是一定不是友好的; 然后看一个质数,一个合数的情况,令gcd(a,b)=x;则要求x,1,k,这三个数组成三角形,通过联立不等式可得k只能等于x,即两个数是x,x*x; 最后看合数,合数,合数一定能够被分解成若干个因数相乘;并且这个因数是合数之前存在的,只要这个合数是这个因数的平方即可,这时候因数和这个合数都是友好数字;

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 2000010;
int prime[N];
bool st[N];
int s[N];
void isprime() {
	int cnt = 0;
	for (int i = 2; i <= N; i++) {//质数筛
		if (!st[i]) prime[cnt++] = i;
		for (int j = 0; prime[j] <= N / i; j++) {
			st[prime[j]*i] = true;
			if (i % prime[j] == 0) break;
		}

	}
	
	for (int i = 2; i <= N; i++) {
		if (!st[i])
			s[i]++;
		int p = (sqrt(i));
		if (p * p == i and !st[p]) s[i]--;//从i开始,p不再是孤独的数;
	}
}
int main() {
	int n;
	scanf("%d",&n);
	int x;
	s[1] = 1;
	isprime();
	for(int i=1;i<=N;i++) s[i]+=s[i-1];
	for (int i = 1; i <= n; i++) {
		scanf("%d",&x);
		printf("%d\n",s[x]);
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值