查找算法刷题【二分查找算法】

一、原理

        如下图所示的就是二分查找算法的原理:

注意:二分查找算法中一个重要的思想:数组和函数是一样的概念,对可以使用二分法查找要求如下所示。

(1)数组f[i]是有序数组         

(2)函数f(x)是单调的函数

(3)f[i]=d,由x找d容易,由d找x较难

(4)f(x)=y,由x找y容易,由y找x较难

二、代码示例

2.1、二分查找算法对有序数据的查找

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>


void output(int* arr, int n, int ind) {
    int len = 0;
    for (int i = 0; i < n; i++) {
        len += printf("%4d", i);
    }
    printf("\n");
    for (int i = 0; i < len; i++) printf("-");
    printf("\n");
    for (int i = 0; i < n; i++) {
        if (i == ind) printf("\033[1;32m");
        printf("%4d", arr[i]);
        if (i == ind) printf("\033[0m");
    }
    printf("\n");
    return;
}


/* 二分查找算法 */
int binary_search(int* arry, int len, int findData)
{
    int head = 0, tail = len - 1, mid;
    while (head <= tail)
    {
        mid = (head + tail) / 2;
        printf("\r\n[%d, %d], mid = %d, arr[%d] = %d\n",
                head, tail, mid,
                mid, arry[mid]);
        if (arry[mid] == findData) return mid;
        if (arry[mid] > findData) tail = mid - 1;
        else head = mid + 1;
    }
    return -1;
}


void test(int n)
{
    int findData = 0, ret=0;
    int* arr = (int*)malloc(sizeof(int) * n);
    arr[0] = rand() % 100;
    for (int i = 1; i < n; i++)
    {
        arr[i] = arr[i - 1] + rand() % 100;
    }
    output(arr, n, -1);            //打印数组
    while (~scanf_s("%d", &findData))
    {
        ret = binary_search(arr, n, findData);     //二分法查找
        if (-1 == ret) {
            printf("未找到\r\n");
            break;
        }
        output(arr, n, ret);
    }
    free(arr);
}

运行结果;

2.2、二分查找算法对单调函数的查找

        二分查找算法对函数的查找,就是x取较大值和较小值,然后两者逼近函数的输出值,最终将输出值与目标值对比,只到达到最终的精度要求。

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>


#define EXP 1e-4       //最后二分法对函数查找的最小精度
#define min(a, b) ((a) < (b) ? (a) : (b))   

double fun(double x) {
    if (x >= 0)     x -= min(x, 3000) * 0.03;
    if (x > 3000)   x -= (min(x, 12000) - 3000) * 0.1;
    if (x > 12000)  x -= (min(x, 25000) - 12000) * 0.2;
    if (x > 25000)  x -= (min(x, 35000) - 25000) * 0.25;
    if (x > 35000)  x -= (min(x, 55000) - 35000) * 0.3;
    if (x > 55000)  x -= (min(x, 80000) - 55000) * 0.35;
    if (x > 80000)  x -= (x - 80000) * 0.45;
    return x;
}

/* 二分查找算法 */
double binary_algorithm(double Belast)
{
    double head = 0, tail = 1000000, mid;    //头为税后最小,尾为税后最大
    while (tail - head >= EXP)               //这里是循环的退出条件,而不是在函数内部
    {
        mid = (head + tail) / 2.0;    
        if (fun(mid) > Belast) tail = mid; 
        else head = mid;
    }
    return head;
}


/* 根据税后收入查税前收入是多少 */
void test1()
{
    double Belast=0.0, Befirst = 0.0;
    printf("\r\n请输入税后收入:");
    while (~scanf_s("%lf", &Belast))
    {
        Befirst = binary_algorithm(Belast);
        if (Befirst == -1) printf("未找到");
        else printf("Befist:%lf\r\n", Befirst);
        printf("\r\n请输入税后收入:");
    }
}


int main()
{
    test1();
    return 0;
}

最终输出结果:

三、二分查找算法的泛式情况

      定义head为数组的头下表,tail为数组的尾部的下表,mid为数组中位数的下表。下面是原始二分法算法,针对“0123456789”形式数组:

while(head <= tail)

{

        mid = (head + tail) / 2;

        if(num[mid] == target)  return true;

        if(num[mid] > target)  tail = mid-1;

        else  head = mid+1;

}

(1)情况一:如果二分查找的问题是“11111111000000”,查找数组中最后一个1的位置。在二分法算法中需要做下面的调整

        head = mid;

        mid = (head + tail + 1) / 2;

(2)情况二:如果二分查找的问题是“00000001111111”,查找数组中第一个1的位置。

        trail= mid

3.1、示例一

        将数组中分为比target大的数,和比target小的数。也就成了“0000001111111”的问题,因为插入数据的下表的索引肯定是中位数靠后一个位置。

/* 使用二分法:有序数组查找是否存在,不存在返回插入位置 */
class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int head = 0, trail = nums.size(), mid;
        while (head < trail)
        {
            mid = (head + trail) / 2;
            if (nums[mid] > target) head = mid + 1;
            else trail = mid;    //找第一个符合要求的元素。
        }
        return head;
    }
};

3.2、示例二

        检查数组中元素出现的次数,就是“1111111000000”的问题。

/* 二分查找法:无限字符串 */
class Solution {
public:
    bool check(string& s, int len)
    {
        int cnt[256] = {0}, k = 0;    //这里cnt必须全部初始化为0
        for (int i = 0; s[i]; i++)
        {
            cnt[s[i]] += 1;
            if (cnt[s[i]] == 1) k+=1;
            if (i >= len)             //这里必须是大于等于
            {
                cnt[s[i - len]] -= 1;
                if (cnt[s[i - len]] == 0) k -= 1;
            }
            if (len == k) return true;
        }
        return false;
    }
    int lengthOfLongestSubstring(string s) {
        int head = 0, trail = s.size(), mid;
        while (head < trail)
        {
            mid = (head + trail + 1) / 2;
            if (check(s, mid)) head = mid;
            else trail = mid - 1;
        }
        return head;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值