数论题瞎做[1]

前言

某个学MO的朋友给我看的题

这题似乎是1994年国家数学集训队选拔考试D1T1

怪不得我做了好久(

upd.20220513 害,他半途而废退役了



一、题面

求四个所有的由四个自然数 a , b , c , d a,b,c,d a,b,c,d 组成的数组,使数组中任意三个数的乘积除以剩下的一个数余数为 1 1 1

二、题解

(注:我写的可能有点不太正式,毕竟我只是个OIer)

由题意可得

a b c ≡ 1 m o d    d abc \equiv 1 \mod d abc1modd

a b d ≡ 1 m o d    c abd \equiv 1 \mod c abd1modc

a c d ≡ 1 m o d    b acd \equiv 1 \mod b acd1modb

b c d ≡ 1 m o d    a bcd \equiv 1 \mod a bcd1moda

可化为

d ∣ ( a b c − 1 ) d|(abc-1) d(abc1)

c ∣ ( a b d − 1 ) c|(abd-1) c(abd1)

b ∣ ( a c d − 1 ) b|(acd-1) b(acd1)

a ∣ ( b c d − 1 ) a|(bcd-1) a(bcd1)

∴ a b ∣ ( a c d − 1 ) ( b c d − 1 ) ⇒ a b ∣ ( a b c 2 d 2 − a c d − b c d + 1 ) \therefore ab|(acd-1)(bcd-1) \Rightarrow ab|(abc^2d^2-acd-bcd+1) ab(acd1)(bcd1)ab(abc2d2acdbcd+1)

∴ a b ∣ ( a c d + b c d − 1 ) \therefore ab|(acd+bcd-1) ab(acd+bcd1)

同理 c d ∣ ( a b c + a b d − 1 ) cd|(abc+abd-1) cd(abc+abd1)

∴ a b c d ∣ ( a 2 b c 2 d + a b 2 c 2 d + a 2 b c 2 d + a b 2 c d 2 − a b c − a b d − a c d − b c d + 1 ) \therefore abcd|(a^2bc^2d+ab^2c^2d+a^2bc^2d+ab^2cd^2-abc-abd-acd-bcd+1) abcd(a2bc2d+ab2c2d+a2bc2d+ab2cd2abcabdacdbcd+1)

∴ a b c d ∣ ( a b c + a b d + a c d + b c d − 1 ) \therefore abcd|(abc+abd+acd+bcd-1) abcd(abc+abd+acd+bcd1)

t = a b c + a b d + a c d + b c d − 1 a b c d t=\dfrac{abc+abd+acd+bcd-1}{abcd} t=abcdabc+abd+acd+bcd1

∴ t = 1 a + 1 b + 1 c + 1 d − 1 a b c d \therefore t=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}-\dfrac{1}{abcd} t=a1+b1+c1+d1abcd1

显然 a , b , c , d a,b,c,d a,b,c,d 两两互质,且 a ≥ 2 a \ge 2 a2

由于不考虑顺序,则假设 2 ≤ a < b < c < d 2\le a < b < c < d 2a<b<c<d

∴ t < 4 a ≤ 2 \therefore t< \dfrac{4}{a} \le 2 t<a42

∵ t ∈ Z + \because t\in \Z^+ tZ+

∴ a = 2 , 3 , t = 1 \therefore a=2,3,t=1 a=2,3,t=1

a = 3 a=3 a=3 时, t m a x = 1 3 + 1 4 + 1 5 + 1 6 − 1 360 = 341 360 < 1 t_{max} = \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{360} = \dfrac{341}{360}<1 tmax=31+41+51+613601=360341<1 ∴ \quad\therefore 舍去

a = 2 a=2 a=2 时, t m a x = 1 2 + 1 3 + 1 5 + 1 7 − 1 210 = 246 210 > 1 t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{210} = \dfrac{246}{210}>1 tmax=21+31+51+712101=210246>1

∴ a = 2 \therefore a =2 a=2

∴ 1 2 < 3 b \therefore \dfrac{1}{2}<\dfrac{3}{b} 21<b3

∴ b = 3 , 5 \therefore b=3,5 b=3,5

b = 5 b=5 b=5 时, t m a x = 1 2 + 1 5 + 1 7 + 1 9 − 1 630 = 600 630 < 1 t_{max} = \dfrac{1}{2}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{630} = \dfrac{600}{630}<1 tmax=21+51+71+916301=630600<1 ∴ \quad\therefore 舍去

b = 3 b=3 b=3 时, t m a x = 1 2 + 1 3 + 1 5 + 1 7 − 1 210 = 246 210 > 1 t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{210} = \dfrac{246}{210}>1 tmax=21+31+51+712101=210246>1

∴ b = 3 \therefore b=3 b=3

∴ 1 6 < 2 c \therefore \dfrac{1}{6} < \dfrac{2}{c} 61<c2

∴ c = 7 , 11 \therefore c=7,11 c=7,11

c = 7 c=7 c=7 时, t m a x = 1 2 + 1 3 + 1 7 + 1 11 − 1 462 = 492 462 > 1 t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{1}{11}-\dfrac{1}{462} = \dfrac{492}{462}>1 tmax=21+31+71+1114621=462492>1

c = 11 c=11 c=11 时, t m a x = 1 2 + 1 3 + 1 11 + 1 13 − 1 858 = 858 858 = 1 t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{11}+\dfrac{1}{13}-\dfrac{1}{858} = \dfrac{858}{858}=1 tmax=21+31+111+1318581=858858=1

显然当 c = 11 c=11 c=11 d = 13 d=13 d=13

则一组解为 2 , 3 , 11 , 13 2,3,11,13 2,3,11,13

c = 7 c=7 c=7

1 42 < 1 d \dfrac{1}{42}<\dfrac{1}{d} 421<d1

∴ d = 41 \therefore d=41 d=41

则另一组解为 2 , 3 , 7 , 41 2,3,7,41 2,3,7,41

综上所述,答案为 2 , 3 , 11 , 13 2,3,11,13 2,3,11,13 2 , 3 , 7 , 41 2,3,7,41 2,3,7,41


总结

简单讲了一道简单数论题

为了验算结果我直接敲了个 O ( n 4 ) O(n^4) O(n4) 的暴力(傻)

转载请说明出处

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
由于目没有具体说明是哪个作业的练习,因此无法提供准确的答案。数论是关于整性质与结构的研究,涉及到整的基本性质,因此答案需要根据具体的目来给出。以下是一些数论导引练习的一般解答方法: 1. 证明素无穷多个: 答案:假设素只有有限个,标记为p1, p2, ..., pn。然后构造一个新的q,q = p1p2...pn +1。由于1不是素,所以q一定是一个。这样我们得到了比已知的所有素都大的素q,与假设矛盾,因此素无穷多个。 2.证明方程x^2 + y^2 = z^2 在正整解中有无穷多个: 答案:首先,我们可以构造一个简单的解(x,y,z) = (3,4,5)。然后考虑将这个解乘以一个正整k得到新的解(x',y',z')=(3k,4k,5k)。由于k是任意的正整,所以可以构造出无穷多个解。因此,方程在正整解中有无穷多个。 3.证明质乘积加一不是素: 答案:假设质乘积加一是一个,标记为p。然后考虑将p减去1,得到p-1。根据欧拉定理,如果p是一个,那么p-1一定能被p的某一个质因整除。但由于p-1是p的倍,所以p也能整除p-1,这与p是一个矛盾。因此,质乘积加一不是素。 总之,数论一个广泛而深入的领域,需要具体问具体分析,根据目中给出的具体条件进行推导和证明。以上是一些常见的解答方法,但无法确定具体的目,所以答案可能不是完整的或不适用于特定的练习

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值