洛谷P4141 消失之物 题解

洛谷P4141 消失之物 题解

题目链接:P4141 消失之物

题意:ftiasch 有 n n n 个物品, 体积分别是 w 1 , w 2 , … , w n w_1,w_2,\dots,w_n w1,w2,,wn 。由于她的疏忽,第 i i i 个物品丢失了。

“要使用剩下的 n − 1 n-1 n1 物品装满容积为 x x x 的背包,有几种方法呢?”——这是经典的问题了。

她把答案记为 cnt ( i , x ) \text{cnt}(i,x) cnt(i,x),想要得到所有 i ∈ [ 1 , n ] , x ∈ [ 1 , m ] i \in [1,n] ,x \in [1,m] i[1,n],x[1,m] cnt ( i , x ) \text{cnt}(i,x) cnt(i,x) 表格。

只需要输出末位数字。

f [ i ] [ j ] f[i][j] f[i][j] 为只用前 i i i 件物品,不考虑删除任何物品时,恰好装满容量为 j j j 的背包的方案数,显然有
f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − w [ i ] ] f[i][j]=f[i-1][j]+f[i-1][j-w[i]] f[i][j]=f[i1][j]+f[i1][jw[i]]
滚动数组一下就是

f[0]=1;
for(int i=1; i<=n; i++)
	for(int j=m; j>=w[i]; j--)
		f[j]+=f[j-w[i]];

那么现在求出来的 f [ i ] f[i] f[i] 也就是原来的 f [ n ] [ i ] f[n][i] f[n][i]

于是设 g [ i ] [ j ] g[i][j] g[i][j] 为不考虑物品 i i i 的贡献恰好装满容量为 j j j 的背包的方案数

首先容易想到一个看起来正确的柿子(其实是错的)
g [ i ] [ j ] = f [ n ] [ j ] − f [ n ] [ j − w [ i ] ] g[i][j]=f[n][j]-f[n][j-w[i]] g[i][j]=f[n][j]f[n][jw[i]]
为什么错呢?因为 f [ n ] [ j − w [ i ] ] f[n][j-w[i]] f[n][jw[i]] 中也可能含有 w [ i ] w[i] w[i] 的贡献!

那么其实稍微改一改就对了
g [ i ] [ j ] = f [ n ] [ j ] − g [ i ] [ j − w [ i ] ] g[i][j]=f[n][j]-g[i][j-w[i]] g[i][j]=f[n][j]g[i][jw[i]]
此时的 g [ i ] [ j − w [ i ] ] g[i][j-w[i]] g[i][jw[i]] 恰好删除了物品 i i i 的贡献,不错

注意这个 g [ i ] [ j ] g[i][j] g[i][j] 需要 j j j 顺推,因为我们需要 g [ i ] [ j − w [ i ] ] g[i][j-w[i]] g[i][jw[i]]

然后这个柿子还是不够精简

注意到我们其实并不需要记录 i i i 这一状态,因为我们其实不需要保存这些信息

加上之前的滚动数组优化,柿子可以化简为
g [ j ] = { f [ j ] − g [ j − w [ i ] ] , j ≥ w [ i ] , f [ j ] , default. g[j]= \begin{cases} f[j]-g[j-w[i]],&j \ge w[i], \\f[j],&\text{default.} \end{cases} g[j]={f[j]g[jw[i]],f[j],jw[i],default.
嗯,其实还可以化简。

memcpy(g,f,sizeof(f));
for(int j=w[i]; j<=m; j++)
	g[j]-=g[j-w[i]];

时间复杂度 O ( n m ) O(nm) O(nm)

代码:

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(2e3+15)
int n,m;
int w[N],f[N],g[N];
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n >> m;
    for(int i=1; i<=n; i++)
        cin >> w[i];
    f[0]=1;
    for(int i=1; i<=n; i++)
        for(int j=m; j>=w[i]; j--)
            f[j]=(f[j]+f[j-w[i]])%10; // 题目只要末位即可
    for(int i=1; i<=n; i++)
    {
        memcpy(g,f,sizeof(f));
        for(int j=w[i]; j<=m; j++)
            g[j]=(g[j]-g[j-w[i]])%10;
        for(int j=1; j<=m; j++)
            cout <<(g[j]+10)%10; // +10是防止出现负结果
        cout << '\n';
    }
    return 0;
}

转载请说明出处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值