洛谷P4141 消失之物 题解
题目链接:P4141 消失之物
题意:ftiasch 有 n n n 个物品, 体积分别是 w 1 , w 2 , … , w n w_1,w_2,\dots,w_n w1,w2,…,wn 。由于她的疏忽,第 i i i 个物品丢失了。
“要使用剩下的 n − 1 n-1 n−1 物品装满容积为 x x x 的背包,有几种方法呢?”——这是经典的问题了。
她把答案记为 cnt ( i , x ) \text{cnt}(i,x) cnt(i,x),想要得到所有 i ∈ [ 1 , n ] , x ∈ [ 1 , m ] i \in [1,n] ,x \in [1,m] i∈[1,n],x∈[1,m] 的 cnt ( i , x ) \text{cnt}(i,x) cnt(i,x) 表格。
只需要输出末位数字。
设
f
[
i
]
[
j
]
f[i][j]
f[i][j] 为只用前
i
i
i 件物品,不考虑删除任何物品时,恰好装满容量为
j
j
j 的背包的方案数,显然有
f
[
i
]
[
j
]
=
f
[
i
−
1
]
[
j
]
+
f
[
i
−
1
]
[
j
−
w
[
i
]
]
f[i][j]=f[i-1][j]+f[i-1][j-w[i]]
f[i][j]=f[i−1][j]+f[i−1][j−w[i]]
滚动数组一下就是
f[0]=1;
for(int i=1; i<=n; i++)
for(int j=m; j>=w[i]; j--)
f[j]+=f[j-w[i]];
那么现在求出来的 f [ i ] f[i] f[i] 也就是原来的 f [ n ] [ i ] f[n][i] f[n][i] 了
于是设 g [ i ] [ j ] g[i][j] g[i][j] 为不考虑物品 i i i 的贡献恰好装满容量为 j j j 的背包的方案数
首先容易想到一个看起来正确的柿子(其实是错的)
g
[
i
]
[
j
]
=
f
[
n
]
[
j
]
−
f
[
n
]
[
j
−
w
[
i
]
]
g[i][j]=f[n][j]-f[n][j-w[i]]
g[i][j]=f[n][j]−f[n][j−w[i]]
为什么错呢?因为
f
[
n
]
[
j
−
w
[
i
]
]
f[n][j-w[i]]
f[n][j−w[i]] 中也可能含有
w
[
i
]
w[i]
w[i] 的贡献!
那么其实稍微改一改就对了
g
[
i
]
[
j
]
=
f
[
n
]
[
j
]
−
g
[
i
]
[
j
−
w
[
i
]
]
g[i][j]=f[n][j]-g[i][j-w[i]]
g[i][j]=f[n][j]−g[i][j−w[i]]
此时的
g
[
i
]
[
j
−
w
[
i
]
]
g[i][j-w[i]]
g[i][j−w[i]] 恰好删除了物品
i
i
i 的贡献,不错
注意这个 g [ i ] [ j ] g[i][j] g[i][j] 需要 j j j 顺推,因为我们需要 g [ i ] [ j − w [ i ] ] g[i][j-w[i]] g[i][j−w[i]]
然后这个柿子还是不够精简
注意到我们其实并不需要记录 i i i 这一状态,因为我们其实不需要保存这些信息
加上之前的滚动数组优化,柿子可以化简为
g
[
j
]
=
{
f
[
j
]
−
g
[
j
−
w
[
i
]
]
,
j
≥
w
[
i
]
,
f
[
j
]
,
default.
g[j]= \begin{cases} f[j]-g[j-w[i]],&j \ge w[i], \\f[j],&\text{default.} \end{cases}
g[j]={f[j]−g[j−w[i]],f[j],j≥w[i],default.
嗯,其实还可以化简。
memcpy(g,f,sizeof(f));
for(int j=w[i]; j<=m; j++)
g[j]-=g[j-w[i]];
时间复杂度 O ( n m ) O(nm) O(nm)
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(2e3+15)
int n,m;
int w[N],f[N],g[N];
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
// freopen("check.in","r",stdin);
// freopen("check.out","w",stdout);
cin >> n >> m;
for(int i=1; i<=n; i++)
cin >> w[i];
f[0]=1;
for(int i=1; i<=n; i++)
for(int j=m; j>=w[i]; j--)
f[j]=(f[j]+f[j-w[i]])%10; // 题目只要末位即可
for(int i=1; i<=n; i++)
{
memcpy(g,f,sizeof(f));
for(int j=w[i]; j<=m; j++)
g[j]=(g[j]-g[j-w[i]])%10;
for(int j=1; j<=m; j++)
cout <<(g[j]+10)%10; // +10是防止出现负结果
cout << '\n';
}
return 0;
}
转载请说明出处