洛谷P2585 [ZJOI2006]三色二叉树 题解
题意:
一棵二叉树可以按照如下规则表示成一个由 0 0 0、 1 1 1、 2 2 2 组成的字符序列,我们称之为“二叉树序列 S S S”:
S = { 0 表 示 该 树 没 有 子 节 点 1 S 1 表 示 该 树 有 一 个 节 点 , S 1 为 其 子 树 的 二 叉 树 序 列 2 S 1 S 2 表 示 该 树 由 两 个 子 节 点 , S 1 和 S 2 分 别 表 示 其 两 个 子 树 的 二 叉 树 序 列 S= \begin{cases} 0& \text表示该树没有子节点\\ 1S_1& 表示该树有一个节点,S_1 为其子树的二叉树序列\\ 2S_1S_2& 表示该树由两个子节点,S_1 和 S_2 分别表示其两个子树的二叉树序列 \end{cases} S=⎩⎪⎨⎪⎧01S12S1S2表示该树没有子节点表示该树有一个节点,S1为其子树的二叉树序列表示该树由两个子节点,S1和S2分别表示其两个子树的二叉树序列
例如,下图所表示的二叉树可以用二叉树序列 S = 21200110 S=\texttt{21200110} S=21200110 来表示。
你的任务是要对一棵二叉树的节点进行染色。每个节点可以被染成红色、绿色或蓝色。并且,一个节点与其子节点的颜色必须不同,如果该节点有两个子节点,那么这两个子节点的颜色也必须不同。给定一颗二叉树的二叉树序列,请求出这棵树中最多和最少有多少个点能够被染成绿色。
对于全部的测试点,保证 1 ≤ ∣ s ∣ ≤ 5 × 1 0 5 1 \leq |s| \leq 5 \times 10^5 1≤∣s∣≤5×105, s s s 中只含字符
0
1
2
。
入门级的树形dp
设 f i f_i fi 表示染 i i i 所在子树, i i i 染绿色的最大/最小绿色结点数,
g
i
g_i
gi 表示染
i
i
i 所在子树,
i
i
i 不染绿色的最大/最小绿色结点数。
f
i
=
g
l
+
g
r
+
1
g
i
=
max
/
min
{
f
l
+
g
r
,
g
l
+
f
l
}
f_i = g_l+g_r+1 \\g_i = \max/\min\left\{f_l+g_r,~g_l+f_l\right\}
fi=gl+gr+1gi=max/min{fl+gr, gl+fl}
跑个dfs建树即可
时间复杂度 O ( n ) O(n) O(n)
代码:
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(5e5+15)
char s[N];
int n,rt,f[N],g[N],ch[N][2],cnt;
void build(int &u)
{
u=++cnt;
int c=s[u]-'0';
if(c==0)return;
if(c==1)build(ch[u][0]);
if(c==2)build(ch[u][0]),build(ch[u][1]);
}
#define ls(x) (ch[x][0])
#define rs(x) (ch[x][1])
void solve(int ck)
{
for(int i=n; i>=1; i--)
{
f[i]=g[ls(i)]+g[rs(i)]+1;
if(!ck)g[i]=max(f[ls(i)]+g[rs(i)],g[ls(i)]+f[rs(i)]);
else g[i]=min(f[ls(i)]+g[rs(i)],g[ls(i)]+f[rs(i)]);
}
if(!ck)cout << max(f[1],g[1]) << ' ';
else cout << min(f[1],g[1]) << '\n';
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
// freopen("check.in","r",stdin);
// freopen("check.out","w",stdout);
cin >> (s+1); n=strlen(s+1); build(rt);
solve(0); solve(1);
return 0;
}
转载请说明出处