洛谷P4568 [JLOI2011] 飞行路线 题解

洛谷P4568 [JLOI2011] 飞行路线 题解

题目链接:P4568 [JLOI2011] 飞行路线

题意

Alice 和 Bob 现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在 n n n 个城市设有业务,设这些城市分别标记为 0 0 0 n − 1 n-1 n1,一共有 m m m 种航线,每种航线连接两个城市,并且航线有一定的价格。

Alice 和 Bob 现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多 k k k 种航线上搭乘飞机。那么 Alice 和 Bob 这次出行最少花费多少?

对于 100 % 100\% 100% 的数据, 2 ≤ n ≤ 1 0 4 2 \le n \le 10^4 2n104 1 ≤ m ≤ 5 × 1 0 4 1 \le m \le 5\times 10^4 1m5×104 0 ≤ k ≤ 10 0 \le k \le 10 0k10 0 ≤ s , t , a , b ≤ n 0\le s,t,a,b\le n 0s,t,a,bn a ≠ b a\ne b a=b 0 ≤ c ≤ 1 0 3 0\le c\le 10^3 0c103

分层图板子题

不写具体做法了,就总结几个易错点

  • 无向图的e数组开
    M × ( K + 1 ) × 4 M\times (K+1) \times 4 M×(K+1)×4
    M M M 稍微大一点(比如5e4+5)用于后面的额外边

  • 额外边:如果 s → t s\to t st 的路径,结点数小于 k k k

    则需要单独建边

    for(int i=1; i<=k; i++)
        addEdge((i-1)*n+t,i*n+t,0);
    

    这样答案才是 d[k*n+t]

时间复杂度 O ( n k log ⁡ m k ) O(nk\log mk) O(nklogmk)

代码:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
#include <queue>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(1e4+5)
#define M (int)(5e4+5)
#define K (int)(11)
struct Edge
{
    int u,v,w,next;
}e[M*(K+1)*4];
int n,m,k,s,t,pos=1,head[N*(K+1)],d[N*(K+1)],vis[N*(K+1)];
struct node{int u,dis;};
bool operator<(node a,node b){return a.dis>b.dis;}
priority_queue<node> q;
void addEdge(int u,int v,int w)
{
    e[++pos]={u,v,w,head[u]};
    head[u]=pos;
}
void dijkstra(int st)
{
    memset(d,0x3f,sizeof(d));
    q.push({st,0}); d[st]=0;
    while(!q.empty())
    {
        int u=q.top().u; q.pop();
        if(vis[u])continue;
        vis[u]=1;
        for(int i=head[u]; i; i=e[i].next)
        {
            int v=e[i].v,w=e[i].w;
            if(d[v]>d[u]+w)
            {
                d[v]=d[u]+w;
                q.push({v,d[v]});
            }
        }
    }

}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n >> m >> k >> s >> t; ++s; ++t;
    for(int i=1,u,v,w; i<=m; i++)
    {
        cin >> u >> v >> w; ++u; ++v;
        addEdge(u,v,w);addEdge(v,u,w);
        for(int j=1; j<=k; j++)
        {
            addEdge(j*n+u,j*n+v,w);
            addEdge(j*n+v,j*n+u,w);
            addEdge((j-1)*n+u,j*n+v,0);
            addEdge((j-1)*n+v,j*n+u,0);
        }
    }
    for(int i=1; i<=k; i++)
        addEdge((i-1)*n+t,i*n+t,0);
    dijkstra(s);
    cout << d[k*n+t] << '\n';
    return 0;
}

转载请说明出处

题目描述似乎缺失了关键信息,通常我会需要了解“P10780 食物”是什么具体的算法竞赛题目,它来自在线平台洛谷(Luogu),以及该题目的大致背景、条件和目标。洛谷食物(Food)可能是某种数据结构算法问题,比如贪吃蛇、分配任务等。 然而,我可以给你提供一个通用的模板: **[洛谷 P10780 食物 - 题目解析]** 题目名称:P10780 食物(假设是关于食物分配或者饥饿游戏的问题) 链接:[插入实际题目链接] **背景:** 此题通常涉及动态规划或者搜索策略。场景可能是有n个参与者(选手或角色),每个都有特定的食物需求或者优先级,我们需要在有限的食物资源下合理分配。 **分析:** 1. **输入理解**:首先读入n个参与者的信息,包括每个人的需求量或优先级。 2. **状态定义**:可以定义dp[i][j]表示前i个人分配完成后剩余的食物能满足第j个人的最大程度。 3. **状态转移**:递推式可能涉及到选择当前人分配最多食物的版本,然后更新剩余的食物数。 4. **边界条件**:如果剩余食物不足以满足某人的需求,则考虑无法分配给他;如果没有食物,状态值设为0。 5. **优化策略**:可能需要对状态数组进行滚动更新,以减少空间复杂度。 **代码示例(伪代码或部分关键代码片段):** ```python # 假设函数分配_food(demand, remaining)计算分配给一个人后剩余的食物 def solve(foods): dp = [[0 for _ in range(max_demand + 1)] for _ in range(n)] dp = foods[:] # 从第一个到最后一个参与者处理 for i in range(1, n): for j in range(1, max_demand + 1): if dp[i-1][j] > 0: dp[i][j] = max(dp[i][j], dp[i-1][j] - foods[i]) dp[i][j] = max(dp[i][j], distribute_food_to(i, dp[i-1][j])) return dp[n-1][max_demand] ``` **相关问题--:** 1. 这道题是如何运用动态规划的? 2. 如果有优先级限制,应该如何调整代码? 3. 怎样设计搜索策略来解决类似问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值