洛谷P4799 [CEOI2015 Day2] 世界冰球锦标赛 题解

"本文介绍了洛谷P4799[CEOI2015Day2]世界冰球锦标赛的题解,探讨了如何在有限预算内计算Bobek可以观看的不同比赛组合。通过使用折半搜索和动态规划的方法,将问题分解为两部分并合并答案,最终得出时间复杂度约为O(n2^{frac{n}
摘要由CSDN通过智能技术生成

洛谷P4799 [CEOI2015 Day2] 世界冰球锦标赛 题解

题目链接:P4799 [CEOI2015 Day2] 世界冰球锦标赛

题意

译自 CEOI2015 Day2 T1「Ice Hockey World Championship

今年的世界冰球锦标赛在捷克举行。Bobek 已经抵达布拉格,他不是任何团队的粉丝,也没有时间观念。他只是单纯的想去看几场比赛。如果他有足够的钱,他会去看所有的比赛。不幸的是,他的财产十分有限,他决定把所有财产都用来买门票。

给出 Bobek 的预算和每场比赛的票价,试求:如果总票价不超过预算,他有多少种观赛方案。如果存在以其中一种方案观看某场比赛而另一种方案不观看,则认为这两种方案不同。

数据组号 1 − 2 1-2 12 3 − 4 3-4 34 5 − 7 5-7 57 8 − 10 8-10 810
N ≤ N \leq N 10 10 10 20 20 20 40 40 40 40 40 40
M ≤ M \leq M 1 0 6 10^6 106 1 0 18 10^{18} 1018 1 0 6 10^6 106 1 0 18 10^{18} 1018

首先这个 20 20 20 就很有趣 显然暴搜是吧

那么 40 40 40 的情况怎么处理呢

考虑折半搜索。

折半搜索的思想就是

把原来的问题拆分成两部分分别暴搜

然后合并两个部分的答案

显然折半搜索的优劣取决于合并的复杂度

在这题里,我们分别搜前半部分和后半部分

合并的话,直接看代码

dfs(1,mid,0,sum1,cnt1);
dfs(mid+1,n,0,sum2,cnt2);
sort(sum2+1,sum2+1+cnt2);
for(int i=1; i<=cnt1; i++)
    res+=upper_bound(sum2+1,sum2+1+cnt2,m-sum1[i])-sum2-1;
cout << res << '\n';

这里的 u p p e r _ b o u n d \tt{upper\_bound} upper_bound 其实很好理解

就是严格大于 m − s 1 m-s_1 ms1 的那个 s 2 s_2 s2 的位置

显然那个 s 2 s_2 s2 之前的都可以取

时间复杂度 O ( 2 n 2 log ⁡ 2 n 2 ) ≈ O ( n 2 n 2 ) O(2^{\frac{n}{2}} \log 2^{\frac{n}{2}}) \approx O(n2^{\frac{n}{2}}) O(22nlog22n)O(n22n)

代码:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
#include <random>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)((1<<20)+15)

int n,m,res,cnt1,cnt2,val[N],sum1[N],sum2[N];
void dfs(int l,int r,int sum,int a[],int &cnt)
{
    if(sum>m) return;
    if(l>r)
    {
        a[++cnt]=sum;
        return;
    }
    dfs(l+1,r,sum+val[l],a,cnt);
    dfs(l+1,r,sum,a,cnt);
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n >> m;
    for(int i=1; i<=n; i++)
        cin >> val[i];
    int mid=n/2;
    dfs(1,mid,0,sum1,cnt1);
    dfs(mid+1,n,0,sum2,cnt2);
    sort(sum2+1,sum2+1+cnt2);
    for(int i=1; i<=cnt1; i++)
        res+=upper_bound(sum2+1,sum2+1+cnt2,m-sum1[i])-sum2-1;
    cout << res << '\n';
    return 0;
}

转载请说明出处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值