洛谷P2085 最小函数值 题解
题目链接:P2085 最小函数值
题意:
有 n n n 个函数,分别为 F 1 , F 2 , … , F n F_1,F_2,\dots,F_n F1,F2,…,Fn。定义 F i ( x ) = A i x 2 + B i x + C i ( x ∈ N ∗ ) F_i(x)=A_ix^2+B_ix+C_i(x\in\mathbb N^*) Fi(x)=Aix2+Bix+Ci(x∈N∗)。给定这些 A i A_i Ai、 B i B_i Bi 和 C i C_i Ci,请求出所有函数的所有函数值中最小的 m m m 个(如有重复的要输出多个)。
1 ≤ A i ≤ 10 , 10 ≤ B i ≤ 100 , 100 ≤ C i ≤ 1 0 4 1 \leq A_i\le10,~10 \le B_i\le100,~100 \le C_i\le10^4 1≤Ai≤10, 10≤Bi≤100, 100≤Ci≤104。
这是一篇随机化优化的奇怪题解
题面十分不清楚。所以稍微修改了一下下。
注意这里的数据范围
根据二次函数对称轴 x = − b 2 a x=-\dfrac{b}{2a} x=−2ab
不难发现这些函数均在 [ 0 , + ∞ ) [0,+\infty) [0,+∞) 单调递增
那就很简单了,直接用个大根堆维护 k k k 大值的方法搞一搞就好了
然后发现时间复杂度最坏似乎 O ( n m log m ) O(nm\log m) O(nmlogm)
因此我们可以用随机化乱搞一下,防止特意构造的数据 😎 😎 😎
时间复杂度上界其实还是 O ( n m log m ) O(nm\log m) O(nmlogm)
但是实际的复杂度比这个要低一些(然而因为常数又慢了一些)
代码:
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
#include <random>
#include <queue>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(1e4+15)
mt19937 rd(time(0));
priority_queue<int> q;
int n,m,a[N],b[N],c[N],tmp[N],ans[N];
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
// freopen("check.in","r",stdin);
// freopen("check.out","w",stdout);
cin >> n >> m;
for(int i=1; i<=m; i++)
tmp[i]=i, q.push(INF);
shuffle(tmp+1,tmp+1+n,rd);
for(int i=1; i<=n; i++)
cin >> a[tmp[i]] >> b[tmp[i]] >> c[tmp[i]];
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
int k=a[i]*j*j+b[i]*j+c[i];
if(k<q.top()){q.pop();q.push(k);}
else break;
}
for(int i=m; i>=1; i--)
ans[i]=q.top(),q.pop();
for(int i=1; i<=m; i++)
cout << ans[i] << " \n"[i==m];
return 0;
}
转载请说明出处