opencv图片拼接

本文介绍了如何使用OpenCV进行图片拼接,通过读取图片、特征检测、匹配、仿射变换和图像融合等步骤,实现两张不同角度图片的无缝结合。主要涉及的关键技术包括SURF特征检测、BFMatcher描述子匹配和透视变换。
摘要由CSDN通过智能技术生成

opencv图片拼接

介绍:两张不同角度的图可以拼接为同一张图,并且消除拼接的痕迹。
思路
1.读取图片,进行缩放为统一尺度大小
2.进行特征检测+特征点描述
3.用描述子匹配
4.进行仿射变换
5.拼接

不多说,上代码

#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d/nonfree.hpp>

using namespace std;
using namespace cv::xfeatures2d;
using namespace cv;
Mat srcimg01,srcimg02;
vector<KeyPoint> kp1, kp2;
Mat dst1, dst2;


void join(vector<DMatch> good_matches)
{
   
	vector<Point2f> pf1, pf2;
	for (int i = 0; i < good_matches.size(); i++)
	{
   
		pf1.push_back(kp1[good_matches[i].queryIdx].pt);
		pf2.push_back(kp2[good_matches[i].trainIdx].pt);
	}

	Mat homo = findHomography(pf2, pf1, RANSAC);
	cout << "变换矩阵:\n " << homo << endl;

	struct P
	{
   
		Point2f left_top;
		Point2f left_bottom;
		Point2f right_top;
		Point2f right_bottom;
	};

	P p;

	cout << "1" << endl;
	//左上角
	double v2[] = {
    0,0,1 };
	double v1[3];
	Mat V1 = Mat(3, 1, CV_64FC1, v1);
	Mat V2 = Mat(3, 1, CV_64FC1, v2);
	V1 = homo * V2;
	p.left_top.x = v1[0] / v2[2];
	p.left_top.y = v1[1] / v2[2];



	//左下角
	v2[0] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yikang.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值