前言
排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
我们这里说说八大排序就是内部排序。
当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。
快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
提示:以下是本篇文章正文内容,下面案例可供参考
一、常见排序及算法思路
八大排序,三大查找是《数据结构》当中非常基础的知识点,在这里为了复习总结了一下常见的八种排序算法。
常见的八大排序算法,他们之间关系
如下:
它们的性能比较:
直接插入排序:
单趟排序:把待排序的记录按其关键码值的大小逐个插入到一
个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
假设把这个五插入到这个有序数组我们是从右向左,我们要做的是依次比大小。 如果比它大,就往后移一位,如果比它小,就插在它的后面。当插入的是0和前面一样到和1比完后前边没数时就插入到它的前边。
多趟排序:多趟排序是假设“|”前边是待插数组‘|’后一位数是待插数实行多次单趟排序。
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与
array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移
直接插入排序的特性总结:
1. 元素集合越接近有序,直接插入排序算法的时间效率越高
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1),它是一种稳定的排序算法
4. 稳定性:稳定
希尔插入排序:
基本思想:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。先预排序,在直接插入排序。我们把一组数据分成以gap为间距的若干组再进行组内排序,gap一般首先选数组长的一般,然后再取一半的一半进行组内排序,当gap为1是便是直接插入排序。
这个数组初始gap为5 进行组内排序,排序完后再进行第二趟排序gap减半,当gap=1时进行直接插入排序。
希尔排序的特性总结:
1. 希尔排序是对直接插入排序的优化。
2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就
会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
3. 希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度: O(N^1.3—N^2)
4. 稳定性:不稳定
选择排序:
1,从待排序序列中,找到关键字最小的元素;
2,如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;
3,从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。因此我们可以发现,简单选择排序也是通过两层循环实现
第一层循环:依次遍历序列当中的每一个元素
第二层循环:将遍历得到的当前元素依次与余下的元素进行比较,符合最小元素的条件,则交换。
直接选择排序的特性总结:
1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定
交换排序:
将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素;
( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;)
对序列当中剩下的n-1个元素再次执行步骤1。
对于长度为n的序列,一共需要执行n-1轮比较
(利用while循环可以减少执行次数)
冒泡排序的特性总结:
1. 冒泡排序是一种非常容易理解的排序
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:稳定
快速排序:
1. hoare版本
单趟排序
、
我们选最后一位为key用begin和end分别从前和后比较如果begin比key大,end比key小两个就交换位置最后key和begin交换位置这样就形成了左比key小,右边比key大的数组。
多趟排序是经过一次单趟排序后,然后左边再选一个数为进行key单趟排序,右边相同,最后就把数组就分成一个个数了。
挖坑法
单趟排序
给一个例子:
- 从序列当中选择一个基准数(key)
在这里我们选择序列当中第一个数最为基准数 - 将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧
- 重复步骤1.2,直到所有子集当中只有一个元素为止。
用伪代码描述如下:
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中
二、常见排序代码实现
代码如下(示例):
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<time.h>
#include<string.h>
// 插入排序
void InsertSort(int* a, int n) {
assert(a);
for (int i = 0; i < n-1; i++) {
int end = i;
int temp = a[end + 1];
while (end >= 0) {
if (temp < a[end]) {
a[end + 1] = a[end];
end--;
}
else {
break;
}
}
a[end + 1] = temp;
}
}
// 希尔排序
void shellsort(int* a, int n) {
int gap=n;
while (gap > 1) {
gap = gap / 3+1;
for (int i = 0; i < n - gap; i++) {
int end = i;
int temp = a[end + gap];
while (end >= 0) {
if (a[end] > temp) {
a[end + gap] = a[end];
end -= gap;
}
else { break; }
a[end + gap] = temp;
}
}
}
}
void swap(int* p1, int* p2) {
int temo = *p1;
*p1 = *p2;
*p2 = temo;
}
// 选择排序
void SelectSort(int* a, int n) {
assert(a);
int begin=0, end=n-1;
while (begin < end) {
int min, max;
min = max = begin;
for (int i = begin + 1; i <= end; i++) {
if (a[min] > a[i]) {
min =i;
}
if (a[max] < a[i]) {
max=i;
}
}
swap(&a[begin], &a[min]);
if (begin == end) {
max = min;
}
swap(&a[max], &a[end]);
++begin;
--end;
}
}
// 堆排序
void AdjustDwon(int* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
if (a[child] > a[parent])
{
swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
// 排升序,建大堆还是小堆?
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
AdjustDwon(a, n, i);
}
int end = n - 1;
while (end > 0)
{
swap(&a[0], &a[end]);
AdjustDwon(a, end, 0);
--end;
}
}
// O(N^2)
void BubbleSort(int* a, int n)
{
int end = n;
while (end > 0)
{
int exchange = 0;
for (int i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
{
break;
}
--end;
}
}
// 快速排序递归实现
// 快速排序hoare版本
int GetMidIndex(int* a, int begin, int end) {
int mid = (begin + end) / 2;
if (a[begin] < a[mid]){
if (a[mid] < a[end])
return mid;
else if (a[begin] > a[end])
return begin;
else
return end;
}
else {
if (a[mid] > a[end])
return mid;
else if (a[begin] < a[end])
return begin;
else
return end;
}
}
int PartSort1(int* a, int left, int right) {
int mid=GetMidIndex(a, left, right);
swap(&a[mid], &a[right]);
int key = right;
while (left <right) {
while(left <right&&a[left] <=a[key]) {
++left;
}
while (left <right&&a[right] >=a[key]) {
--right;
}
swap(&a[left], &a[right]);
}
swap(&a[left], &a[key]);
return left;
}
// 快速排序挖坑法
int PartSort2(int* a, int left, int right) {
int mid = GetMidIndex(a, left, right);
swap(&a[mid], &a[right]);
int key = a[right];
while (left < right) {
while (left < right && a[left] <= key) {
++left;
}
a[right] = a[left];
while (left < right && a[right] >= key) {
--right;
}
a[left] = a[right];
}
a[left] = key;
return left;
}
// 快速排序前后指针法
int PartSort3(int* a, int left, int right) {\
int mid = GetMidIndex(a, left, right);
swap(&a[mid], &a[right]);
int key = right;
int cur = left;
int prev = left - 1;
while (cur < right) {
if (a[cur]<a[key]&&++prev !=cur) {
swap(&a[prev], &a[cur]);
}
++cur;
}
swap(&a[++prev], &a[cur]);
return prev;
}
void QuickSort(int* a, int left, int right) {
assert(a);
if (left > right) {
return;
}
int div = PartSort3(a, left, right);
QuickSort(a, left, div-1);
QuickSort(a, div + 1, right);
}
// 快速排序 非递归实现
void QuickSortNonR(int* a, int left, int right);
归并排序递归实现
void MergeSort(int* a, int n);
void ShellSort(int* a, int n);
void _MergeSort(int* a, int left, int right, int* tmp) {
if (left >= right)
return;
int mid = (left + right) / 2;
_MergeSort(a, left, mid, tmp);
_MergeSort(a, mid + 1, right, tmp);
//归并[left, mid] [mid+1, right]有序,
int begin1 = left, end1 = mid;
int begin2 = mid + 1, end2 = right;
int index = begin1;
while (begin1 <= end1 && begin2 <= end2)
if (a[begin1] < a[begin2])
tmp[index++] = a[begin1++];
else
tmp[index++] = a[begin2++];
while (begin1 <= end1)
tmp[index++] = a[begin1++];
while (begin2 <= end2)
tmp[index++] = a[begin2++];
for (int i = left; i <= right; ++i)
a[i] = tmp[i];
}
void MergeSort(int* a,int n){
assert(a);
int* tmp =(int*) malloc(sizeof(int) * n);
_MergeSort(a,0,n - 1,tmp);
free(tmp);
}
归并排序非递归实现
//void MergeSortNonR(int* a, int n)
计数排序
//void CountSort(int* a, int n)
/*void _Mfile(const char *file1,const char *file2,const char*mfile){
FILE *fout1 = fopen(file1,"r");
if (fout1 == NULL)
{
printf("打开文件朱败\n");
exit(-1);
}
FILE*fout2 = fopen(file2,"r");
if (fout2 == NULL)
{
printf("打开文件失败\n"); exit(-1);
}
FILE*fin = fopen(mfile, "w");
if (fin == NULL) {
printf("打开文件失败\n");
exit(-1);
}
int num1,num2;
int ret1 = fscanf(fout1,"%d\n", &num1);
int ret2 = fscanf(fout2,"%d\n", &num2);
while (ret1 != EOF && ret2 != EOF)
{
if (num1 < num2) {
fprintf(fin,"%d\n", num1);
ret1 = fscanf(fout1,"%d\n", &num1);
}
else {
fprintf(fin,"%d\n", num2);
ret2 = fscanf(fout2,"%d\n", &num2);
}
}
while (ret1 != EOF) {
fprintf(fin, "%d\n",num1);
ret1 = fscanf(fout1,"%d\n", &num1);
}
while (ret2 != EOF)
{
fprintf(fin,"%d \n", num2);
ret2 = fscanf(fout2,"%d\n", &num2);
}
fclose(fout1);
fclose(fout2);
fclose(fin);
}
void MergeSortFile(const char* file) {
FILE* fout = fopen(file, "r");
if (fout == NULL) {
printf("打开文件失败\n");
exit(-1);
}
// 分割成一段一段数据,内存排序后写到,小文件,
int n = 10;
int a[10];
int i = 0;
int num = 0;
char subfile[20];
int filei = 1;
memset(a, 0, sizeof(int) * n);
while (fscanf(fout, "%d\n", &num) != EOF)
if (i < n - 1)
a[i++] = num;
else {
a[i] = num;
QuickSort(a, 0, n - 1);
sprintf(subfile, "%d", filei++);
}
FILE* fin = fopen(subfile, "w");
if (fin = NULL) {
printf("打开文件失败\n");
exit(-1);
}
for (int i = 0; i < n; i++)
fprintf(fin, "%d\n", a[i]);
fclose(fin);
i = 0;
memset(a, 0, sizeof(int) * n);
//利用互相归并到文件,实现整体有序
char mfile[100];
char file1[100];
char file2[100];
for (int i = 2; i <= n; ++i) {
//读取file1和file2, 进行归并出mfile
_Mfile(file1, file2, mfile);
strcpy(file1, mfile);
sprintf(file2, "%d", i + 1);
sprintf(mfile, "%s%d", mfile, i + 1);
}
fclose(fout);
}
void CountSort(int* a, int n) {
assert(a);
int min = a[0];
int max = a[0];
for (int i = 0; i < n; i++) {
if (a[i] > max)
max = a[i];
if (a[i] < min)
min = a[i];
}
int range=max-min + 1;
int* countArr = (int*)malloc(sizeof(int) * range);
memset(countArr,0, sizeof(int) * range);
for (int i = 0; i < n; ++i) {
countArr[a[i] - min]++;
}
//排序
int index = 0;
for (int j = 0; j < range; ++j)
while (countArr[j]--)
a[index++] = j + min;
free(countArr);
}*/
void printfarry(int* a, int n) {
for (int i = 0; i < n; i++) {
printf("%d ", a[i]);
}
printf("\n");
}
void treeInsertSort() {
int a[] = { 1,3,4,5,4,8,4,5,9,7,8,9};
printfarry(a, sizeof(a) / sizeof(int));
MergeSort(a,sizeof(a) / sizeof(int));
printfarry(a, sizeof(a) / sizeof(int));
}
int main() {
treeInsertSort();
return 0;
}
总结
各种排序的稳定性,时间复杂度和空间复杂度总结:
我们比较时间复杂度函数的情况:
时间复杂度函数O(n)的增长情况
所以对n较大的排序记录。一般的选择都是时间复杂度为O(nlog2n)的排序方法。
时间复杂度来说:
(1)平方阶(O(n2))排序
各类简单排序:直接插入、直接选择和冒泡排序;
(2)线性对数阶(O(nlog2n))排序
快速排序、堆排序和归并排序;
(3)O(n1+§))排序,§是介于0和1之间的常数。
希尔排序
(4)线性阶(O(n))排序
基数排序,此外还有桶、箱排序。
说明:
当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O(n);
而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O(n2);
原表是否有序,对简单选择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。
稳定性:
排序算法的稳定性:若待排序的序列中,存在多个具有相同关键字的记录,经过排序, 这些记录的相对次序保持不变,则称该算法是稳定的;若经排序后,记录的相对 次序发生了改变,则称该算法是不稳定的。
稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,可以避免多余的比较;
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序
选择排序算法准则:
每种排序算法都各有优缺点。因此,在实用时需根据不同情况适当选用,甚至可以将多种方法结合起来使用。
选择排序算法的依据
影响排序的因素有很多,平均时间复杂度低的算法并不一定就是最优的。相反,有时平均时间复杂度高的算法可能更适合某些特殊情况。同时,选择算法时还得考虑它的可读性,以利于软件的维护。一般而言,需要考虑的因素有以下四点:
1.待排序的记录数目n的大小;
2.记录本身数据量的大小,也就是记录中除关键字外的其他信息量的大小;
3.关键字的结构及其分布情况;
4.对排序稳定性的要求。
设待排序元素的个数为n.
1)当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。
快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
堆排序 : 如果内存空间允许且要求稳定性的,
归并排序:它有一定数量的数据移动,所以我们可能过与插入排序组合,先获得一定长度的序列,然后再合并,在效率上将有所提高。
2) 当n较大,内存空间允许,且要求稳定性 =》归并排序
3)当n较小,可采用直接插入或直接选择排序。
直接插入排序:当元素分布有序,直接插入排序将大大减少比较次数和移动记录的次数。
直接选择排序 :元素分布有序,如果不要求稳定性,选择直接选择排序
5)一般不使用或不直接使用传统的冒泡排序。
6)基数排序
它是一种稳定的排序算法,但有一定的局限性:
1、关键字可分解。
2、记录的关键字位数较少,如果密集更好
3、如果是数字时,最好是无符号的,否则将增加相应的映射复杂度,可先将其正负分开排序。