大白话理解德摩根定律(De Morgan‘s Laws)

本文以大白话介绍德摩根定律,解释了非(A 且 B)=(非 A)或(非 B)和非(A 或 B)=(非 A)且(非 B)的逻辑关系。通过引入集合论,详细证明了这两个定律,揭示了命题逻辑中的重要原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

  该笔记写给自己之后复习理解,文中用词不一定很标准,很多东西是我想到了就写上去的,意会即可。

德摩根定律

简介

  简而言之,该定律描述了命题逻辑中的两个关系:
  若设现有两个命题A和B,那么必然有

非(A 且 B)=(非 A)或(非 B)
非(A 或 B)=(非 A)且(非 B)
  如今天我要出门买水果,设此时有两个命题
A:买西瓜
B:买苹果
如果应用德摩根定律的引理1,此时必然有
非(买西瓜 且 买苹果)=(非 买西瓜)或(非 买苹果)
翻译一下上面的等式,等式左边的命题表示:“不会既买西瓜也买苹果”,即
非(买西瓜 且 买苹果)= 西瓜和苹果中至少有一个不买
同理,等式右边的命题表示:要么“不买西瓜”,要么“不买苹果”(当然,逻辑关系中的或可以表达两者均成立,即“西瓜苹果均不买”),那么容易理解,这句话的意思也同样表示“西瓜和苹果中至少有一个不买”,那么显然,德摩根定律所表述的等式左右两端其实表达的是同一个意思。

  对引理2也可以用同样的方式进行理解,此处不再赘述,接下来就用数学推导不那么严格(😀)地证明和理解一下一般形式下的德摩根定律。
  首先,列出德摩根定律两个引理的一般形式,此处的推导和符号标记都参考了这篇文献

引理1

( ⋂ i = 1 n S i ) c = ⋃ i = 1 n S n c \quad (\bigcap_{i=1}^{n} S_i)^c = \bigcup_{i=1}^{n}S_n^c (i=1nSi)c=i=1nSnc

引理2

( ⋃ i = 1 n S i ) c = ⋂ i = 1 n S n c \quad (\bigcup_{i=1}^{n} S_i)^c = \bigcap_{i=1}^{n}S_n^c (i=1nSi)c=i=1nSnc

式中, S i S_{i} Si 表示第 i i i 个集合, n n n 表示集合的总个数, c c c 代表补集,此处也可以理解为“非”。

证明

证明的思路

  我们知道,两个集合相等的充分必要条件是两个集合互为子集,即

A = B ⇌ ( A ⊂ B ) ∩ ( B ⊂ A ) A=B \rightleftharpoons (A \subset B) \cap (B\subset A) A=B(AB)(BA)

基于这个前提,我们只需要证明摩根定律中等式两端的对应集合互为子集即能证得德摩根定律,明白了这一点,我们就可以具体推导并解释德摩根定律的证明过程。

引理1的证明过程

  在这里重申一下引理1:

( ⋂ i = 1 n S i ) c = ⋃ i = 1 n S n c \quad (\bigcap_{i=1}^{n} S_i)^c = \bigcup_{i=1}^{n}S_n^c (i=1nSi)c=i=1nS

并发CAS是指在高并发环境下的一种无锁算法,它可以实现多个线程之间的变量同步,而不需要使用锁来进行线程阻塞。这种机制在处理高并发访问时非常常见和常用,它可以有效地提高并发性能。 简单来说,并发CAS的工作原理是通过比较内存中的值与期望值是否相等来确定是否需要更新这个值。如果相等,则使用新的值来更新内存中的值;如果不相等,则说明其他线程已经修改了这个值,当前线程需要重新读取内存中的值并重新比较,直到成功为止。 举个例子来说明,并发CAS的过程:假设有两个线程同时执行incrementAndGet()操作,他们都希望将某个变量的值增加1。首先,线程1读取内存中的值,并将期望值设为读取到的值。接着,线程1使用CAS操作来比较内存中的值与期望值是否相等,如果相等,则将新的值更新到内存中。与此同时,线程2也在执行相同的操作。如果线程1和线程2同时执行CAS操作,那么只有一个线程能够成功更新内存中的值,而另一个线程需要重新读取内存中的值并重新比较。这样就避免了锁机制下的线程阻塞,提高了并发性能。 总的来说,并发CAS是一种非常有效的并发优化手段,它可以在高并发环境下提供更好的性能和可伸缩性。然而,需要注意的是,并发CAS并不是适用于所有并发场景,它对于一些复杂的并发问题可能无法提供完全准确的结果。这需要开发者在使用并发CAS时对多线程并发问题有一定的了解和处理经验。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值