大白话理解德摩根定律(De Morgan's Laws)
说明
该笔记写给自己之后复习理解,文中用词不一定很标准,很多东西是我想到了就写上去的,意会即可。
德摩根定律
简介
简而言之,该定律描述了命题逻辑中的两个关系:
若设现有两个命题A和B,那么必然有
对引理2也可以用同样的方式进行理解,此处不再赘述,接下来就用数学推导不那么严格(😀)地证明和理解一下一般形式下的德摩根定律。
首先,列出德摩根定律两个引理的一般形式,此处的推导和符号标记都参考了这篇文献。
引理1
( ⋂ i = 1 n S i ) c = ⋃ i = 1 n S n c \quad (\bigcap_{i=1}^{n} S_i)^c = \bigcup_{i=1}^{n}S_n^c (i=1⋂nSi)c=i=1⋃nSnc
引理2
( ⋃ i = 1 n S i ) c = ⋂ i = 1 n S n c \quad (\bigcup_{i=1}^{n} S_i)^c = \bigcap_{i=1}^{n}S_n^c (i=1⋃nSi)c=i=1⋂nSnc
式中, S i S_{i} Si 表示第 i i i 个集合, n n n 表示集合的总个数, c c c 代表补集,此处也可以理解为“非”。
证明
证明的思路
我们知道,两个集合相等的充分必要条件是两个集合互为子集,即
A = B ⇌ ( A ⊂ B ) ∩ ( B ⊂ A ) A=B \rightleftharpoons (A \subset B) \cap (B\subset A) A=B⇌(A⊂B)∩(B⊂A)
基于这个前提,我们只需要证明摩根定律中等式两端的对应集合互为子集即能证得德摩根定律,明白了这一点,我们就可以具体推导并解释德摩根定律的证明过程。
引理1的证明过程
在这里重申一下引理1:
( ⋂ i = 1 n S i ) c = ⋃ i = 1 n S n c \quad (\bigcap_{i=1}^{n} S_i)^c = \bigcup_{i=1}^{n}S_n^c (i=1⋂nSi)c=i=1⋃nS