算法设计与分析——分支限界法——布线问题

印刷电路板将布线区域划分成n×m个方格如图a所示。精确的电路布线问题要求确定连接方格a的中点到方格b的中点的最短布线方案。在布线时,电路只能沿直线或直角布线,如图b所示。为了避免线路相交,已布了线的方格做了封锁标记,其它线路不允穿过被封锁的方格。
在这里插入图片描述

一个布线的例子:图中包含障碍。起始点为a,目标点为b。
在这里插入图片描述

算法思想:

解此问题的队列式分支限界法从起始位置a开始将它作为第一个扩展结点。与该扩展结点相邻并且可达的方格成为可行结点被加入到活结点队列中,并且将这些方格标记为1,即从起始方格a到这些方格的距离为1。

接着,算法从活结点队列中取出队首结点作为下一个扩展结点,并将与当前扩展结点相邻且未标记过的方格标记为2,并存入活结点队列。这个过程一直继续到算法搜索到目标方格b或活结点队列为空时为止。即加入剪枝的广度优先搜索
使用的c++普通队列解决问题

#include<iostream>
using namespace std;
#include<queue> 
#include<bits/stdc++.h>
class Position{
   
	public:
		int row;//行 
		int col;//列 
};
const int m=7;//列数 
const int n=7;
int gird[n+2][m+2];
bool FindPath(Position start,Position finish,int &PathLen,Position *&path)
{
   
	if((start.col == finish.col)&&(start.row == finish.row ))//起点和终点是同一个点时 
	{
   
		PathLen = 0;
		return true;
	}

	  //初始化相对位移
	  Position offset[4];
	  //右 
	  offset[0].col =0;
	  offset[0].row =1; 
	  //下
	  offset[1].col =1;
	  offset[1].row =0;
	  
	  //左
	  offset[2].col =0;
	  offset[2].row =-1;
	  
	  //上 
	  offset[3].col =-1;
	  offset[
  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为你介绍一下分支限界法和装载问题的相关内容。 分支限界法是一种求解最优化问题的算法,通过不断扩展解空间,逐步缩小搜索范围,最终找到最优解。它的核心思想是将问题划分成许多子问题,并采用优先队列(或优先级队列)来维护待扩展的子问题集合,每次取出优先级最高的子问题进行扩展,直到找到最优解或者队列为空。 而装载问题是一种典型的分支限界法应用场景,它的主要思想是在给定的一些物品中选出尽可能多的物品放入容量为C的背包中,使得背包中物品的总重量不超过C,并且背包中物品的总价值最大。这个问题可以通过分支限界法来求解。 下面是一个简单的 Java 代码实现,用于解决装载问题: ```java import java.util.*; public class BranchAndBound { public static void main(String[] args) { int[] w = {5, 10, 20, 30}; // 物品的重量 int[] v = {50, 60, 140, 120}; // 物品的价值 int C = 50; // 背包的容量 int n = w.length; // 物品的数量 int[] x = new int[n]; // 记录每个物品是否被选中 PriorityQueue<Node> queue = new PriorityQueue<>(); queue.offer(new Node(-1, 0, 0)); // 将根节点加入队列中 while (!queue.isEmpty()) { Node node = queue.poll(); // 取出优先级最高的子问题 if (node.level == n - 1) { // 如果是叶子节点,更新最优解 for (int i = 0; i < n; i++) { x[i] = node.x[i]; } } else { int level = node.level + 1; int weight = node.weight; int value = node.value; if (weight + w[level] <= C) { // 左子节点表示选中当前物品 int[] left = Arrays.copyOf(node.x, n); left[level] = 1; queue.offer(new Node(level, weight + w[level], value + v[level], left)); } // 右子节点表示不选当前物品 queue.offer(new Node(level, weight, value, node.x)); } } int max = 0; for (int i = 0; i < n; i++) { if (x[i] == 1) { System.out.println("第" + (i + 1) + "个物品被选中"); max += v[i]; } } System.out.println("最大价值为:" + max); } // 子问题节点 static class Node implements Comparable<Node> { int level; // 当前节点所在的层级 int weight; // 当前节点的背包重量 int value; // 当前节点的背包价值 int[] x; // 记录每个物品是否被选中 public Node(int level, int weight, int value) { this.level = level; this.weight = weight; this.value = value; this.x = new int[0]; } public Node(int level, int weight, int value, int[] x) { this.level = level; this.weight = weight; this.value = value; this.x = x; } @Override public int compareTo(Node o) { return o.value - this.value; // 根据价值进行优先级比较 } } } ``` 希望这个简单的例子能帮助你更好地理解分支限界法和装载问题。如果你还有其他问题或者疑惑,欢迎随时向我提出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值