算法设计与分析——分支限界法——n皇后问题

本文详细介绍了n皇后问题,阐述了问题描述和算法设计,通过分支限界法解决在n*n棋盘上放置n个互不攻击的皇后。文章分析了行、列及斜线的约束条件,并探讨了算法选择,特别是采用子集树作为解空间结构的原因。
摘要由CSDN通过智能技术生成

一、问题描述

问题描述:在nn格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题等价于在n*n的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

算法设计:设计一个解n皇后问题的队列式分支限界法,计算在nn个方格上放置彼此不受攻击的n个皇后的一个放置方案。

*数据输入:由文件input.txt给出输入数据。第一行有1个正整数n。

*结果输出:将计算的彼此不受攻击的n个皇后的一个放置方案输出到文件output.txt。文件的第一行是n个皇后的放置方案。

输入文件:

input.txt

5

output.txt

1 3 5 2 4

二、问题分析
1.题目分析:

对于每一个放置点而言,它需要考虑四个方向上是否已经存在皇后。分别是行列,45度斜线和135度斜线。

行:每一行只放一个皇后,直到我们把最后一个皇后放到最后一行的合适位置,则算法结束。

列:列相同的约束条件,只需判断j是否相等即可。

45度斜线和135度斜线:约束条件——当前棋子和已放置好的棋子不能存在行数差的绝对值等于列数差的绝对值的情况,若存在则说明两个棋子在同一条斜线上

2.算法选择:

用分支限界法来解决n皇后问题。对于该问题它满足两种树结构。这里由于每一个合适的放置点出现最优解的概率是相等的,因此不需要使用优先队列。编译器提供了一个已经封装好的队列queue。

A.子集树。我们把行约束条件和其它约束条件放在一起,即认为每一行,棋子都有n个位置可以放置。于是它的空间结构如下:
在这里插入图片描述
假设n=3,这个图只画出了两层)

B.排列树。我们把行约束条件单独拿出来,也就是我们认为总共有八个皇后,这八个皇后必须都要放上去,但是放的位置不同,显然这是一个排列树。于是它的空间结构如下
在这里插入图片描述
这里由于我们还存在着其他的约束条件,并且行约束条件和这些条件完全可以放在一起,于是我就选择了相对容易理解的子集树作为解空间结构。

#include<iostream>
#include<queue>
#include<cmath>
#include<vector>
#include<fstream>
#include<sstream>
using namespace std;
 
//定义一个节点类
struct Node{
   
	int number;
	vector<int>x;//保存当前解 
}; 
 
//定义一个Queen的类 
class Queen{
   
	friend int nQueen(int);
	public
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值