基本算法-递推与递归-约数之和

基本算法-递推与递归-约数之和

题目描述

点这里

思路分析

分解质因数+快速幂+推公式
sum(p, k)表示 p 0 + p 1 + … + p k − 1 p^0+p^1+…+p^{k-1} p0+p1++pk1
然后对 k k k的奇偶分情况讨论。
k k k为偶数时,原式可化为 s u m ( p , k / 2 ) + p k / 2 ∗ s u m ( p , k / 2 ) sum(p,k/2)+p^{k/2}∗sum(p,k/2) sum(p,k/2)+pk/2sum(p,k/2)
,也即 ( p k / 2 + 1 ) ∗ s u m ( p , k / 2 ) (p^{k/2}+1)∗sum(p,k/2) (pk/2+1)sum(p,k/2)
k k k为奇数时,可以把最后一项拿掉,转化为偶数和+最后一项,最终化简为 s u m ( p , k − 1 ) + p k − 1 sum(p,k−1)+p^{k−1} sum(p,k1)+pk1

代码实现

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
const int mod=9901;
unordered_map<int,int> primes;
void divide(int n){ //分解质因数
    for(int i=2;i<=n/i;i++){
        if(n%i==0){
            while(n%i==0) primes[i]++,n/=i;
        }
    }
    if(n>1) primes[n]++;
}
int qmi(int a,int b){ //快速幂
    int res=1;
    while(b){
        if(b&1) res=(ll)res*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return res;
}
int sum(int p,int k){ //推公式
    if(k==1) return 1;
    if(k%2==0) return (ll)(qmi(p,k/2)+1)*sum(p,k/2)%mod;
    else return (qmi(p,k-1)+sum(p,k-1))%mod;
}

int main(){
    int a,b;
    cin>>a>>b;
    divide(a);
    int res=1;
    for(auto& p:primes){
        res=(ll)res*sum(p.first,p.second*b+1)%mod;
    }
    if(!a) res=0;
    printf("%d\n",res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DataPlayerK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值