【算法刷题】AcWing 97. 约数之和——递推

假设现在有两个自然数 A A A B B B S S S A B A^B AB 的所有约数之和。
请你求出 S   m o d   9901 S\ mod\ 9901 S mod 9901 的值是多少。
输入格式
在一行中输入用空格隔开的两个整数 A 和 B。
输出格式
输出一个整数,代表 Smod9901 的值。
数据范围
0 ≤ A , B ≤ 5 × 1 0 7 0 \leq A,B \leq 5 \times 10^7 0A,B5×107
输入样例

2 3

输出样例

15

注意 A A A B B B 不会同时为 0 0 0

①分析

约数相关公式 已知: N = p 1 α 1 ⋅ p 2 α 2 . . . p k α k 约数个数 = ( α 1 + 1 ) ⋅ ( α 2 + 1 ) . . . ( α k + 1 ) 约数之和 = ( p 1 0 + p 1 + p 1 2 + . . . p 1 α 1 ) ⋅ ( p 2 0 + p 2 + p 2 2 + . . . p 2 α 2 ) . . . ( p k 0 + p k + p k 2 + . . . p k α k ) 约数相关公式\\ 已知:N=p_1^{\alpha_1}·p_2^{\alpha_2}...p_k^{\alpha_k}\\ 约数个数=(\alpha_1+1)·(\alpha_2+1)...(\alpha_k+1)\\ 约数之和=(p_1^0+p_1+p_1^2+...p_1^{\alpha_1})·(p_2^0+p_2+p_2^2+...p_2^{\alpha_2})...(p_k^0+p_k+p_k^2+...p_k^{\alpha_k})\\ 约数相关公式已知:N=p1α1p2α2...pkαk约数个数=(α1+1)(α2+1)...(αk+1)约数之和=(p10+p1+p12+...p1α1)(p20+p2+p22+...p2α2)...(pk0+pk+pk2+...pkαk)


本题求的是 A B 可以先将 A 进行因式分解 = p 1 α 1 ⋅ p 2 α 2 . . . p k α k 则 A B = p 1 α 1 B ⋅ p 2 α 2 B . . . p k α k B ,就可以使用约数之和公式求解 下面要解决的就是 p 1 0 + p 1 + p 1 2 + . . . p 1 k − 1 怎么求,直接算会超时 法一:等比数列求和公式 = p k − 1 p − 1 ,分子用快速幂, 1 p − 1 就是求 p − 1 关于 9901 的逆元 法二:递归 = s u m ( p , k ) ,看其能否转化为更小的子问题 ① k 为偶数 s u m ( p , k ) = p 0 + p 1 + . . . + p k 2 − 1 + p k 2 ( p 0 + p 1 + . . . + p k 2 − 1 ) = ( 1 + p k 2 ) s u m ( p , k 2 ) ② k 为奇数 s u m ( p , k ) = p 0 + p ( p 0 + p 1 + . . . + p k − 2 ) = 1 + p   s u m ( p , k − 1 ) = s u m ( p , k − 1 ) + p k − 1 本题求的是A^B\\ 可以先将A进行因式分解=p_1^{\alpha_1}·p_2^{\alpha_2}...p_k^{\alpha_k}\\ 则A^B=p_1^{\alpha_1B}·p_2^{\alpha_2B}...p_k^{\alpha_kB},就可以使用约数之和公式求解\\ 下面要解决的就是p_1^0+p_1+p_1^2+...p_1^{k-1}怎么求,直接算会超时\\ 法一:等比数列求和公式=\frac{p^k-1}{p-1},分子用快速幂,\frac{1}{p-1}就是求p-1关于9901的逆元\\ 法二:递归=sum(p,k),看其能否转化为更小的子问题\\ ①k为偶数sum(p,k)=p^0+p^1+...+p^{\frac{k}{2}-1}+p^{\frac{k}{2}}(p^0+p^1+...+p^{\frac{k}{2}-1})=(1+p^{\frac{k}{2}})sum(p,\frac{k}{2})\\ ②k为奇数sum(p,k)=p^0+p(p^0+p^1+...+p^{k-2})=1+p\ sum(p,k-1)=sum(p,k-1)+p^{k-1} 本题求的是AB可以先将A进行因式分解=p1α1p2α2...pkαkAB=p1α1Bp2α2B...pkαkB,就可以使用约数之和公式求解下面要解决的就是p10+p1+p12+...p1k1怎么求,直接算会超时法一:等比数列求和公式=p1pk1,分子用快速幂,p11就是求p1关于9901的逆元法二:递归=sum(p,k),看其能否转化为更小的子问题k为偶数sum(p,k)=p0+p1+...+p2k1+p2k(p0+p1+...+p2k1)=(1+p2k)sum(p,2k)k为奇数sum(p,k)=p0+p(p0+p1+...+pk2)=1+p sum(p,k1)=sum(p,k1)+pk1

②代码
#include <cstdio>

const int MOD = 9901;

int qmi(int a, int k)
{
    int res = 1;
    a %= MOD;
    while (k)
    {
        if (k & 1)
            res = res * a % MOD;
        a = a * a % MOD;
        k >>= 1;
    }
    return res;
}

int sum(int p, int k)
{
    if (k == 1)
        return 1;
    else if (k % 2 == 0)
        return (1 + qmi(p, k / 2)) * sum(p, k / 2) % MOD;
    else
        return (sum(p, k - 1) + qmi(p, k - 1)) % MOD;
}

int main()
{
    int a, b;
    scanf("%d %d", &a, &b);
    
    int res = 1;
    for (int i = 2; i * i <= a; i++)
        if (a % i == 0)
        {
            int p = 0;
            while (a % i == 0)
            {
                a /= i;
                p++;
            }
            res = res * sum(i, p * b + 1) % MOD;
        }
    
    if (a != 1)
        res = res * sum(a, b + 1) % MOD;
    if (a == 0)
        res = 0;
    
    printf("%d\n", res);
    
    return 0;
}
③细节分析
  • 快速幂

    int qmi(int a, int k)
    {
        int res = 1;
        a %= MOD; // a可能会很大,a*a就会爆int
        while (k)
        {
            if (k & 1)
                res = res * a % MOD;
            a = a * a % MOD;
            k >>= 1;
        }
        return res;
    }
    
  • 将a分解质因子

    int res = 1; // 答案
    for (int i = 2; i * i <= a; i++)
        if (a % i == 0)
        {
            int p = 0; // 当前质因子i的最高次数
            while (a % i == 0)
            {
                a /= i;
                p++;
            }
            res = res * sum(i, p * b + 1) % MOD;
        }
    
  • a != 1说明还存在一个的质因子a,其次数为1

    if (a > 1)
        res = res * sum(a, b + 1) % MOD;
    
  • sum(i, p * b + 1)为公式里面 p k α k B = i p   b p_k^{\alpha_kB}=i^{p\ b} pkαkB=ip b这一项,推出的公式中sum的第二个参数为最高次幂加一

  • 递推着求 p k α k B = i p   b p_k^{\alpha_kB}=i^{p\ b} pkαkB=ip b

    int sum(int p, int k)
    {
        if (k == 1) // k=1即次数为0,值为1
            return 1;
        else if (k % 2 == 0)
            return (1 + qmi(p, k / 2)) * sum(p, k / 2) % MOD;
        else
            return (sum(p, k - 1) + qmi(p, k - 1)) % MOD;
    }
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ricky_0528

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值