300. 最长递增子序列

300. 最长递增子序列

题目描述

点这里

思路分析

朴素做法是Dp O ( n 2 ) (n^2) (n2)
f [ i ] : 以 i 结 尾 的 最 长 上 升 子 序 列 的 长 度 f[i]:以i结尾的最长上升子序列的长度 f[i]i
f [ i ] = m a x ( 1 , f [ j ] + 1 ) ( 对 所 有 0 < = j < i ) f[i]=max(1,f[j]+1) (对所有0<=j<i) f[i]=max(1,f[j]+1)(0<=j<i)
最优做法是贪心 O ( n l o g n ) (nlogn) nlogn
贪心:开一个数组记录每个长度下的结尾最小值,显然是单调增的。每次二分找到比当前数小的最大的位置,把下一个位置更新为当前数。最后整个数组的长度就是答案。

代码实现

//朴素做法:Dp
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n=nums.size();
        vector<int> f(n);
        f[0]=1;
        for(int i=1;i<n;i++){
            f[i]=1;
            for(int j=0;j<i;j++){
                if(nums[j]<nums[i]) f[i]=max(f[i],f[j]+1);
            }
        }
        int res=0;
        for(int i=0;i<n;i++) res=max(res,f[i]);
        return res;
    }
};

//最优做法:贪心
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n=nums.size();
        vector<int> q;
        for(auto x:nums){
            if(q.empty()||x>q.back()) q.push_back(x);
            else {
                if(x<=q[0]) q[0]=x;
                else{
                    int l=0,r=q.size()-1;
                    while(l<r){
                        int mid=r+l+1>>1;
                        if(q[mid]<x) l=mid;
                        else r=mid-1;
                    }
                    q[l+1]=x;
                }
            }
        }
        return q.size();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DataPlayerK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值