300. 最长递增子序列(动态规划+贪心)


前言

在本文章中,我们将要解决一下Leetcode中300. 最长递增子序列
在本道题目中,我们将会用动态规划和贪心两种策略分别来解决这道问题。

动态规划

题目解析

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

子序列:要求相对顺序一致,可以是不连续的
子数组: 顺序一致,必须是连续的

这也就说明了子数组其实是子序列的一部分
子序列可以有2^n个
子数组只有n^2个

注意:严格递增,不可以相等

算法原理

1.状态表示

列出dp表,dp表中值的含义是什么

以i位置为结尾,::::::

根据这道题,dp[ i ]:以i位置为结尾的,所有子序列中最长的递增子序列的个数

2.状态转移方程

dp[i]是什么

🌟i位置的值要末是自己组成一个最长递增子序列,要摸和前面的结合一起构成最长递增子序列。
🌟如果是自己构成子序列,dp[ i ]就是1;
🌟如果是与前面的结合,那就复杂了。
因为你不知道前面那麽多dp值,哪个和你结合才是最大的,同时要满足是递增的。
nums[ i ]可以跟在前面任何一个数后面形成子序列。
🌟我们在【0,i-1】区间内找到最大的dp值就可以,同时满足递增

dp[ i ]=max(dp[ j ]+1,dp[ i ])

3.初始化

我们可以全部初始化为0,在填表时,判断两种情况哪个大。
我们也可以按照最坏的情况填表,每个元素都是一个递增子序列,也就是初始化为1,
我们在进行填表时,就只需要关注第二种情况就可以了,自动进行判断。
填表时只需要从第二个位置开始就可以。

4.填表顺序

题目很明显就可以知道,从左向右进行填表

5.返回值是什么

我们再来看一下dp表的含义,所有子序列中最长的递增子序列的个数,所有我们需要在dp表中找最大值。
我们不用吧dp表填完之后,在进行寻找,我们可以一直填表一直寻找最长长度。

代码实现

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int>dp(n,1);
        int maxdp=1;
        for(int i=1;i<n;i++)
        {
            int j=0;
            for(j=0;j<i;j++)
            {
                if(nums[i]>nums[j])
                {
                    dp[i]=max(dp[i],dp[j]+1);
                }
            }
            maxdp=max(dp[i],maxdp);
        }
        return maxdp;
    }
};

时间复杂度为O(N^2),空间复杂度为O(N)

贪心

我们在介绍贪心解的时候,先回顾一下动态规划的解法。
我们在考虑最长递增子序列的长度的时候,我们并不关心这个序列是什么样子的,我们只关心最后一个元素是谁

算法原理

我们以【7,3,8,4,7,2,14,13】这组数据为例子分析一下。

🌟 我们遍历数组内容,首先是7,我们可以得到以下结论:长度为1的子序列为7
🌟 我们继续遍历,为3,3这个元素可以自己成为一个子序列,也可以与前面结合形成一个子序列,但是我们要求是递增的,这种条件并不满足,只能自己形成一个子序列。
🌟 这时,我们发现长度为1的子序列有两个了,一个为3,一个为7。贪心来了,贪心就是每一步都选择当前看起来最优的解法

所有可以跟在7,后边的元素都可以跟在3后边。

那么我们在继续便利的时候,就不需要管7这个元素了,只需要与3进行判断就可以。

🌟 继续遍历到8,8这个元素也有两种选择,自己形成一个子序列,或者与前面的结合形成一个子序列。贪心来了,贪心就是每一步都选择当前看起来最优的解法。

8是大于3的,说明可以跟在3后面,形成长度为2的子序列,这才是我们当前的最优解

🌟 继续遍历到4,4这个元素也有两种选择,自己形成一个子序列,或者与前面的结合形成一个子序列。
我们发现4这个元素是大于3这个元素元素的,所以可以跟在3后面,长度为2的最后一个元素为8,是不能跟在这个元素的后面的。这时长度为2的子序列就有两种,【3,8】,【3,4】.很显然【3,4】是更优的,为什莫呢???
因为所有可以跟在8后面的都可以跟在4后边。
所有我们之后进行判断的时候,就不用管8这个元素了。只需要关心4这个元素。
🌟 后面也是同样的道理…

我们直接来看遍历完样子
在这里插入图片描述

我们通过上帝视角发现这并不是我们子序列的样子,正常应该是【3,4,7,14】或者【3,4,7,13】。我们只要求长度就可以。

我们回想一下贪心的介绍,我们只介绍对的方法,至于为什莫对,我们不关心,当作经验吸收

我们再来总结一下贪心的地方

1.存什么:所有长度为x的递增子序列中,最后一个元素的最小值。
2.存哪里:所有大于等于nums[ i ]的最小值的位置。

分析一下时间复杂度:我们要遍历一遍,便利的同时遍历一下存放位置,时间复杂度为O(N^2);

二分优化

我们可以用二分算法优化时间复杂度。

因为我们存放的数据都是按照有序存放的,我们可以用二分查找算法快速找到对应的位置,就可以把使时间复杂度优化到O(N*logN)

代码实现

class Solution
{

public:
    int lengthOfLIS(vector<int>& nums)
    {
        int n = nums.size();
        vector<int> ret;
        ret.push_back(nums[0]);
        for (int i = 1; i < n; i++)
        {
            if (nums[i] > ret.back()) // 如果能接在最后⼀个元素后⾯,直接放
            {
                ret.push_back(nums[i]);
            }
            else
            {
                // ⼆分插⼊位置
                int left = 0, right = ret.size() - 1;
                while (left < right)
                {
                    int mid = (left + right) >> 1;
                    if (ret[mid] < nums[i]) left = mid + 1;
                    else right = mid;
                }
                ret[left] = nums[i]; // 放在 left 位置上
            }
        }
        return ret.size();
    }
};

总结

以上就是我们对Leetcode中最长递增子序列详细介绍,希望对大家的学习有所帮助,仅供参考 如有错误请大佬指点我会尽快去改正 欢迎大家来评论~~

  • 23
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
动态规划实现最递增序列: 最递增序列问题是指在一个给定的序列中,找到一个序列,使得这个序列中的元素是单调递增的,并且在原序列中的位置是不下标连续的。例如,序列{1,3,2,4,5,6,7,8}的最递增序列为{1,3,4,5,6,7,8},度为7。 动态规划算法的思路是:定义一个辅助数组b,b[i]表示以a[i]为结尾的最递增序列度。对于每个i,遍历0~i-1之间的j,如果a[j]<=a[i]并且b[j]的值最大,那么b[i]=b[j]+1。最后,b数组的最大值即为所求的最递增序列度。 以下是动态规划实现最递增序列的Python代码: ```python def LIS(a): n = len(a) b = [1] * n for i in range(1, n): for j in range(i): if a[j] <= a[i] and b[j] + 1 > b[i]: b[i] = b[j] + 1 return max(b) ``` 时间复杂度为O(n^2)。 0-1背包问题复杂度分析: 0-1背包问题是指有n个物品和一个容量为V的背包,每个物品有一个重量w[i]和一个价值v[i],要求选择若干物品放入背包中,使得在不超过背包容量的前提下,背包中物品的总价值最大。这是一个NP完全问题,没有多项式时间复杂度的解法。 常见的解法有贪心算法和动态规划算法。贪心算法的时间复杂度为O(nlogn),但是不能保证得到最优解;动态规划算法的时间复杂度为O(nV),可以得到最优解,但是当V很大时,时间复杂度会非常高。 因此,在实际应用中,需要根据具体情况选择合适的算法。如果V较小,可以使用动态规划算法;如果V较大,可以使用贪心算法或者其他启发式算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lim 鹏哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值