一.一阶逻辑

1.命题逻辑

1.1 命题定义(不考)

能判断真假而不是可真可假的陈述句为命题。

1.2 命题连接词(必考)

(1)否定:“$\neg$

设P为一个命题,则P的否定为$\neg$P;

(2)析取:“$\vee$

两个命题P和Q的析取是一个复合命题,记作P $\vee$Q。当且仅当P、Q同时为F时,P$\vee$Q的真值为F,否则P $\vee$Q的真值为T;

 (3)合取:“$\wedge$

两个命题P和Q的合取是一个复合命题,记作P $\wedge$Q,当且仅当P、Q同时为T时,P$\wedge$Q为T,在其他情况下,P $\wedge$Q的真值都是F;

 (4)蕴含:“\Rightarrow

给定两个命题P和Q,其条件命题是一个复合命题,记作P \RightarrowQ,读作“如果P,那么Q”或者“若P则Q”。当且仅当P的真值为T,Q的真值为F时,P\RightarrowQ的真值为F,否则P\RightarrowQ的真值为T。我们称P为前件,Q为后件。

 (5)等价:“\Leftrightarrow

给定两个命题P和Q,其复合命题P\LeftrightarrowQ称作双条件命题,读作“P当且仅当Q”,当P和Q的真值相同时,P\LeftrightarrowQ的真值为T,否则P \LeftrightarrowQ的真值为F。

1.3真值表

例1:求下列公式的真值表:($\neg$p$\wedge$q\Rightarrow$\neg$r

pqr$\neg$p$\neg$p$\wedge$q$\neg$r$\neg$p$\wedge$q\Rightarrow$\neg$r
TTTFFFT
TTFFFTT
TFTFFFT
TFFFFTT
FTTTTFF
FTFTTTT
FFTTFFT
FFFTFTT

例2:求下列公式的真值表:(p$\wedge$$\neg$p\Leftrightarrowq$\wedge$$\neg$q

pq$\neg$q$\neg$pp$\wedge$$\neg$pq$\wedge$$\neg$qp$\wedge$$\neg$p\Leftrightarrowq$\wedge$$\neg$q
TTFFFFT
TFTFFFT
FTFTFFT
FFTTFFT

 例3:求下列公式的真值表:$\neg$(p\Rightarrowq)$\wedge$q$\wedge$r

pqrp\Rightarrowq$\neg$(p\Rightarrowq)$\neg$(p\Rightarrowq)$\wedge$q$\neg$(p\Rightarrowq)$\wedge$q$\wedge$r
TTTTFFF
TTFTFFF
TFTFTFF
TFFFTFF
FTTTFFF
FTFTFFF
FFTTFFF
FFFTFFF

例4:求下列公式的真值表:(p\Rightarrow(q\Rightarrowr))\Rightarrow(p\Rightarrowq)

pqrq\Rightarrowr(p\Rightarrow(q\Rightarrowr))p\Rightarrowq(p\Rightarrow(q\Rightarrowr))\Rightarrow(p\Rightarrowq)
TTTTTTT
TTFFFTT
TFTTTFF
TFFTTFF
FTTTTTT
FTFFTTT
FFTTTTT
FFFTTTT

1.4 命题符号化 (必考)

例1:我和他既是兄弟也是又是同学。

设命题p:我和他是兄弟,q:我和他是同学

故命题可符号化为:p$\wedge$q

例2:张三或李四都可以做这件事。

设命题p:张三可以做这件事,q:李四可以做这件事

故命题可以符号化为:p$\vee$q

例3:仅当我有时间且天不下雨,我将去镇上。

当A则B是“A\RightarrowB”,仅当A和B是“B\RightarrowA

设命题p:我有时间,q:天不下雨,r:我去镇上

故命题可以符号化为:r\Rightarrow(p$\wedge$q)

例4:张刚总是在图书馆看书,除非图书馆不开门或张刚生病。

带“除非”的,“除非”是条件

设命题p:张刚在图书馆看书,q:图书馆不开门,r:张刚生病

故命题可以符号化为:$\neg$(q$\vee$r)\Rightarrowp

例5:风雨无阻,我去上学。

可以理解为“不管是否刮风、是否下雨,我都去上学”

设命题p:天刮风,q:天下雨,r:我去上学

故命题可以符号化为:(p$\wedge$q$\wedge$r$\vee$(p$\wedge$$\neg$q$\wedge$r$\vee$$\neg$p$\wedge$q$\wedge$r$\vee$$\neg$p$\wedge$$\neg$q$\wedge$r

例6:张晓静只能挑选202或203房间。

排斥“或”

设命题p:张晓静挑选202房间,q:张晓静挑选203房间

故命题可以符号化为:(p$\wedge$$\neg$q)$\vee$$\neg$p$\wedge$q)

例7:讲软件工程课程的老师是柯老师或者顾老师

相容“或”

设命题p:讲软件工程的老师是柯老师,q:讲软件工程的老师是顾老师

故命题可以符号化为:p$\vee$q

例8:他昨天做了二十或三十道题

近似“或”

原子命题,因为“或”值表示了习题的近似数目。

例9:软件工程三班的上课教室是203或303

排斥“或”

设命题p:软件工程的上课教室是203,q:软件工程的上课教室是303

故命题可以符号化为:(p$\wedge$$\neg$q)$\vee$$\neg$p$\wedge$q)

2.谓词逻辑(证明不考)

2.1 谓词定义

一个大写英文字母后边有括号,括号内是若干个参数,用以表示客体的属性或者客体之间的关系,称之为谓词。如果括号内有n个参数,成谓词为n元谓词。

2.2 量词

(1)存在量词:\exists

(2)约束量词:\forall

\forallx(读作“对任意x”),\existsx(读作“存在一个x”),其中的x就是量词后的一个变量,称为约束变量。

2.3 量词的作用域

定义:在谓词公式中,量词的作用范围称之为量词的作用域。

例:\forallxA(x)中\forallx的作用域是A(x)。

例:\forallx(P(x)$\wedge$Q(x))\Rightarrow\existsyR(x,y))的作用域是(P(x)$\wedge$Q(x))\Rightarrow\existsyR(x,y)

例:\forallx\existsy\forallz(A(x,y)\RightarrowB(x,y,x))$\wedge$C(t)

\forallx的作用域是:A(x,y)\RightarrowB(x,y,x)

\existsy的作用域是:\forallz(A(x,y)\RightarrowB(x,y,x))

\forallx的作用域是:\existsy\forallz(A(x,y)\RightarrowB(x,y,x))

2.4 自由变量和约束变量

例:\forallx(F(x,y)\Rightarrow\existsyP(y))$\wedge$Q(z)$\wedge$\existsxA(x)

1.F(x,y)中的x在\forallx的作用域内,受到\forallx的约束,而其中的y不受\forallx的约束。

2.P(y)中的y在\existsy的作用域内,受\existsy的约束。

3.A(x)中的x在\existsx的作用域内,受\existsx的约束。

4.Q(z)中的z不受量词约束。

受到约束的为约束变量,不受约束的为自由变量。

3.一级逻辑中的证明

(1)有关合取$\wedge$的定律

p  $\wedge$  p  \equiv  p(同一律)
p  $\wedge$  q  \equiv  q   $\wedge$  p (交换律)
$\wedge$  (q  $\wedge$  r)  \equiv  (p  $\wedge$  q)  $\wedge$  r(结合律)

(2)有关析取$\vee$的定律

p  $\vee$  p  \equiv  p(同一律)
p  $\vee$  q  \equiv  q  $\vee$  p (交换律)
$\vee$  (q  $\vee$  r)  \equiv  (p  $\vee$  q)  $\vee$  r(结合律)
$\vee$  q   \equiv  $\neg$($\neg$$\wedge$  $\neg$q)(等价律)

(3)有关蕴含\Rightarrow的定律

p  \Rightarrow  p  \equiv  $\neg$p  $\vee$  q(等价律)

 (4)有关否定$\neg$的定律

$\neg$$\neg$\equiv  p(双重否定定律)
$\neg$(p  $\wedge$  q)  \equiv  $\neg$p  $\vee$  $\neg$q(德摩根定律1)
$\neg$(p  $\vee$  q)  \equiv  $\neg$p  $\wedge$  $\neg$q(德摩根定律2)
$\neg$(p  \Rightarrow  q)  \equiv  p  $\wedge$  $\neg$q
$\neg$(p  \Leftrightarrow  q)  \equiv  ($\neg$$\wedge$  q)  $\vee$  (p  $\wedge$  $\neg$q)

 (5)有关等价\Leftrightarrow的定律

\Leftrightarrow  q  \equiv  (p  \Rightarrow  q)  $\wedge$  (q  \Rightarrow  p)
\Leftrightarrow  q  \equiv  q  \Leftrightarrow  p

(6)其他定律

p  $\wedge$  (q  $\vee$  r)  \equiv  (p  $\wedge$  q)  $\vee$  (p  $\wedge$  r)
p  $\vee$  (q  $\wedge$  r)  \equiv  (p  $\vee$  q)  $\wedge$  (p  $\vee$  r)
p  $\wedge$  (p  $\vee$  q)  \equiv  p
p  $\vee$  (p  $\wedge$  q)  \equiv  p
\Rightarrow  (q  \Rightarrow  r)  \equiv  (p  \Rightarrow  q)  \Rightarrow  r(用不上)
\Leftrightarrow  (q  \Leftrightarrow  r)  \equiv  (p  \Leftrightarrow  q)  \Leftrightarrow  r(用不上)

7.有关true和false的定律

$\wedge$  $\neg$\equiv  false
$\vee$  $\neg$p  \equiv  true
$\wedge$  true  \equiv  p
$\wedge$  false  \equiv  false
$\vee$  true  \equiv  true
$\vee$  false  \equiv  p
$\neg$true  \equiv  false
false  \Rightarrow  p  \equiv  true

 

4.集合论

4.1 集合表示法

(1)列举法

将集合中的元素按任意顺序一一列举出来并用花括号括住,而元素间则用逗号隔开。

例:自然数集:N == {1,2,3,4,5,......}

(2)描述法

用一集合之所有元素共有的共同性质来刻画这个集合S == {x  |  P(x)}

“|”前面的x代表集合A中的任意元素

“|”后面的P(x)表示x必须具有性质P

例:B == {x  |  x是正偶数}

4.2 空集、全集、幂集

4.3 序偶和笛卡尔积(必考)

 

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序不要报错

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值