Bi-Encoder vs. Cross-Encoder
Bi-Encoder 和 Cross-Encoder 是两种常见的模型架构,主要用于自然语言处理(NLP)中的文本匹配、问答、检索等任务。它们的主要区别在于如何处理输入文本以及计算相似度的方式。
1. Bi-Encoder(双编码器)
1.1 工作原理
双编码器:Bi-Encoder 使用两个独立的编码器分别对输入的两个文本(如查询和文档)进行编码。
独立编码:两个文本分别通过编码器(如 BERT)生成各自的向量表示。
相似度计算:通过计算两个向量的点积、余弦相似度等方式,得到文本之间的相似度分数。
1.2 优点
高效:由于两个文本的编码是独立的,可以预先计算并缓存文档的向量表示,适合大规模检索任务。
适合在线服务:在检索系统中,查询向量可以与预先计算的文档向量快速匹配。
1.3 缺点
信息隔离:两个文本在编码过程中没有交互,可能丢失一些细粒度的语义信息。
性能限制:在某些需要精确匹配的任务中,性能可能不如 Cross-Encoder。
1.4 应用场景
大规模检索:如搜索引擎、文档检索。
语义相似度计算:如句子相似度、问答匹配。
1.5 代码示例
复制
from sentence_transformers import</
Bi-Encoder与Cross-Encoder对比及选择

最低0.47元/天 解锁文章
431

被折叠的 条评论
为什么被折叠?



