人工智能
文章平均质量分 64
人工智能,一起学习,一起进步~
会做饭的网络工程师
作业辅导 商务合作: FY22740
展开
-
职业发展利器:ChatGPT的求职建议!【文章底部添加可得内推码汇总表】
在当今竞争激烈的职场中,求职者需要更多的智慧和指导来实现职业发展的目标。随着人工智能的飞速发展,ChatGPT作为一个智能对话生成模型,正逐渐成为职业发展的利器。本文将深入探讨ChatGPT在求职建议方面的潜力和价值。ChatGPT基于强大的自然语言处理技术,能够理解用户提出的问题,并以智能的方式回答。在求职过程中,ChatGPT可以为用户提供关于简历优化、面试技巧、职业规划等方面的建议。其智能咨询的能力使得用户能够更加全面地了解职场要求,提升自己的竞争力。原创 2024-02-26 15:00:54 · 390 阅读 · 0 评论 -
无限创意之旅:深度挖掘Sora AI视频模型的可能性【文章底部添加可得内推码汇总表】
随着人工智能的迅猛发展,AI视频模型正成为数字创意领域的一大亮点。其中,Sora作为一款颇具潜力的AI视频模型,引起了广泛关注。本文将深入研究Sora的特性和应用,探讨其在视频领域中无限可能性的发展前景。Sora是一款基于深度学习技术的先进AI视频模型,其特性在于高效的图像识别和语义理解能力。通过对复杂场景的分析,Sora能够精准地提取关键信息,为视频创作提供更丰富的素材。其高度灵活的架构使其能够适应不同领域的需求,为创作者提供更多创意空间。Sora的强大功能为创意领域带来了全新的可能性。原创 2024-02-26 11:59:00 · 342 阅读 · 0 评论 -
ChatGPT:开启职业生涯的智能导师!【文章底部添加可得内推码汇总表】
随着科技的不断发展,智能技术在各行各业的应用已经成为不可忽视的趋势。在职业生涯规划领域,人工智能(AI)作为一种智能导师,正逐渐为求职者和职场人士提供了全新的帮助方式。本文将探讨ChatGPT作为职业生涯的智能导师在就业市场中的作用和潜力。ChatGPT基于强大的自然语言处理技术,能够理解用户的问题并提供个性化、实用的职业咨询。通过与ChatGPT的对话,用户可以获取关于行业趋势、职业发展方向、求职技巧等方面的信息,帮助其更好地规划职业生涯。原创 2024-02-26 11:41:39 · 545 阅读 · 0 评论 -
就业攻略:ChatGPT为您解析职场秘诀!【文章底部添加可得内推码汇总表】
职场不仅是竞争的舞台,更是个人成长的舞台,通过不断努力和提升,我们必定能够在职业生涯中迎来更加光明的未来。建立良好的人际网络,能够获得更多的资源和支持,提高职业发展的机会。与同事、上司、下属保持积极的沟通,参加行业活动和社交场合,扩大人脉圈,都是培养人际关系的有效途径。在竞争激烈的职场,不断提升自己的专业技能是取得成功的关键。通过学习新的知识、掌握行业热点技术,保持对市场需求的敏感性,都是成为职场佼佼者的必备条件。了解自己的兴趣、能力、优势和劣势,明确个人的职业目标,这有助于为未来的发展制定清晰的方向。原创 2024-02-26 11:36:11 · 345 阅读 · 0 评论 -
就业攻略:ChatGPT为您解析职场秘诀!【文章底部添加可得内推码汇总表】
在当今竞争激烈的就业市场中,成功找到理想的工作并不容易。职场新人常常感到困惑,不知道如何才能在众多竞争者中脱颖而出。然而,随着人工智能技术的不断发展,ChatGPT作为一种强大的自然语言处理工具,为求职者提供了独特的帮助和支持。本文将探讨ChatGPT如何解析职场秘诀,为求职者提供有效的就业攻略。原创 2024-02-25 19:25:36 · 446 阅读 · 0 评论 -
ChatGPT助您提升求职技能
随着科技的迅速发展,人们的生活方式和工作方式也在不断地变革。在这个充满挑战和机遇的时代,求职者需要具备一系列的技能和知识,以便在竞争激烈的就业市场中脱颖而出。而随着人工智能技术的不断演进,ChatGPT作为一种先进的自然语言处理工具,为求职者提供了全新的学习和提升求职技能的途径。本文将探讨ChatGPT如何助您提升求职技能。原创 2024-02-25 19:14:24 · 388 阅读 · 0 评论 -
视界未来:Sora领航AI视频模型的科技进步
借助Sora的智能视频生成技术,视频创作和编辑的效率大大提高,同时还能够保持高质量的输出。Sora可以从海量的视频数据中学习,并且能够理解视频中的场景、对象和动作,从而实现智能的视频内容分析和生成,为视频创作带来了全新的可能性。Sora也在娱乐和教育领域也展现出了巨大的潜力,在娱乐领域,Sora可以为游戏开发、虚拟现实和增强现实等领域提供丰富的视频内容,为用户带来沉浸式的娱乐体验。在教育领域,Sora可以为教学视频的制作和呈现提供更加生动、直观的方式,提升学生的学习效果和兴趣,促进教育资源的共享和传播。原创 2024-02-24 14:53:37 · 367 阅读 · 0 评论 -
ChatGPT助你成功求职:智能引导下的职场新起点【文章底部添加可得内推码汇总表】
然而,随着人工智能的不断发展,ChatGPT作为一种强大的语言模型,不仅可以为我们提供信息,还可以成为求职过程中的得力助手。ChatGPT可以为你提供相关的职业资源和培训建议,帮助你不断提升自己的职业能力,实现职业发展的目标。此外,ChatGPT还可以帮助你检查拼写和语法错误,确保你的文档没有任何失误,给雇主留下良好的印象。因此,让我们充分利用ChatGPT的智能功能,助力我们成功地实现职业目标,开启职场新起点。这样,你在面试中就能够更加自信地回答问题,展现出对公司和行业的了解,增加自己的竞争优势。原创 2024-02-24 13:15:41 · 463 阅读 · 0 评论 -
如何使用ChatGPT创建一份优质简历
然而,记得在使用生成的内容时保持谨慎,并始终注重个性化和定制,以确保您的简历在众多竞争者中脱颖而出。通过明确目标、与ChatGPT建立有针对性的对话,您将能够创造一份引人注目的简历,为您的职业生涯铺平道路。在与ChatGPT的对话中,询问如何更好地突显自己的成就,并使用ChatGPT的建议来为您的成就增添分数。ChatGPT可以提供一般性的建议,但为了使您的简历脱颖而出,您需要对生成的内容进行个性化和定制。根据您的独特经历和特点,调整生成的文本,使之更符合您的个人品牌和职业目标。原创 2024-02-23 18:29:09 · 979 阅读 · 0 评论 -
数据绘画:如何利用AI揭示大数据的美丽图景
大数据已经成为当今社会的一个关键词。大数据不仅仅是庞大的数字和统计数据的堆积,更是一个充满潜力的资源,可以揭示出丰富多彩的图景。在这个数字时代,人工智能(AI)的应用逐渐成为解读大数据的得力工具之一。本文将探讨数据绘画,即如何利用AI揭示大数据的美丽图景,探寻其中蕴藏的可能性和价值。原创 2024-02-23 14:47:36 · 506 阅读 · 0 评论 -
风口Sora已出现,普通人如何赚到钱?
在这个信息爆炸的时代,掌握一些技能、把握机会,普通人同样可以在风口Sora中找到属于自己的财富机遇。掌握这些技能,普通人可以更好地适应时代的发展趋势,更容易找到适合自己的赚钱机会。同时,数字货币等新兴的金融工具也为普通人提供了更多的投资和理财渠道,通过合理的投资规划,也能够在风口Sora中获取财富。此外,通过分享自己的知识和经验,可以吸引更多的人关注,建立起个人品牌,为赚钱创造更多的机会。普通人可以通过关注社会热点、了解市场需求,提出新颖的想法和解决方案,从而在竞争激烈的市场中脱颖而出,赚到更多的钱。原创 2024-02-23 09:45:55 · 382 阅读 · 0 评论 -
OpenAI发布Sora模型,开创AI视频技术新天地
随着Sora模型的不断优化和应用,我们有理由相信,AI视频技术的新天地将会更加广阔,未来的视觉体验将因此更加丰富多彩。例如,借助Sora模型,新闻机构可以快速生成现场报道,电影制作人可以创造出难以想象的特效,教育工作者可以制作更加生动的教学视频。Sora模型的推出,标志着AI在视频理解和生成方面的深度突破。Sora模型能够根据用户的特定需求,生成符合个人喜好的视频内容,从而提供更加贴心的用户体验。无论是定制化的广告宣传片,还是根据用户兴趣推荐的视频内容,Sora模型都能够为个性化服务提供强有力的技术支持。原创 2024-02-22 16:51:19 · 511 阅读 · 0 评论 -
智能时代致富新路径揭秘:普通人如何通过AI赚得盆满钵满
在智能时代的浪潮中,人工智能技术已经不再是高大上的专业领域,而是逐渐融入我们的日常生活。对于普通人而言,利用AI技术实现财富积累不再是天方夜谭,而是一个实实在在的机会。本文将揭示普通人如何在智能时代通过AI技术赚得盆满钵满的新路径,为每个渴望成功的人提供一些建议。普通人可以通过利用AI技术开展网络创业。互联网已经成为我们日常生活中不可或缺的一部分,而AI技术为普通人提供了创业的新机会。原创 2024-02-22 11:25:07 · 971 阅读 · 0 评论 -
开启智能互动新纪元——ChatGPT提示词工程的引领力
另外,技术的局限性也存在一定的挑战,提示词的设置需要更加智能和灵活,以适应各种复杂的语境。从技术角度看,该工程通过大规模的语言数据训练,模型能够更好地理解上下文,并生成更为合理的回应,进一步提高了对话质量。与此同时,该工程也为品牌建设提供了新的思路,通过定制化的对话体验,塑造更加鲜明和亲和的品牌形象。近年来,随着人工智能技术的迅猛发展,ChatGPT提示词工程正逐渐崭露头角,为智能互动注入了新的活力。如果对话需要个性化的交互体验,可以在提示词中加入一些个性化元素,使得模型的回答更符合用户的口味和喜好。原创 2024-02-21 17:22:45 · 1290 阅读 · 0 评论 -
ChatGPT:开启智能新纪元的里程碑
任何技术的发展都不是一帆风顺的。此外,随着人工智能技术的普及,如何确保技术的安全和伦理问题,也是摆在我们面前的一大挑战。无论是作为智能客服提升服务效率,还是作为辅助工具帮助人们学习和工作,亦或是在娱乐和创意产业中的应用,ChatGPT都显示出了巨大的市场潜力和社会价值。它的出现,不仅提升了人工智能的亲民度,也加速了各行各业智能化转型的步伐。可以说,ChatGPT的技术突破,为人工智能的发展提供了新的可能性和方向。它的出现,不仅开启了人工智能的新篇章,更为未来的技术创新和应用提供了无限可能。原创 2024-02-21 15:42:40 · 732 阅读 · 0 评论 -
用PyTorch训练一个简单的K-means无监督算法机器学习模型
这个简单的实现中,`KMeans` 类继承自 `nn.Module`,它有两个参数,`n_clusters` 表示簇的数量,`n_features` 表示每个样本的特征数。在 `forward` 方法中,通过迭代更新聚类中心,最终得到每个样本所属的簇。在 PyTorch 中,可以自己实现 K-means 算法。以下是一个简单的例子,展示如何使用 PyTorch 实现 K-means。这只是一个基础的 K-means 实现,实际应用中可能需要更多的优化和处理。K-means 是一种无监督学习算法,常用于。原创 2023-11-30 21:32:17 · 1278 阅读 · 0 评论 -
用PyTorch训练一个简单的机器学习模型
这个示例中,我们使用了一个简单的线性回归模型,输入是一维的,输出也是一维的。在训练循环中,我们通过正向传播计算预测值,然后使用均方误差损失计算损失。接着进行反向传播和优化步骤。最后,我们可以使用训练好的模型进行新数据的预测。原创 2023-11-30 18:05:30 · 506 阅读 · 0 评论 -
什么是特征衍生?
在实际的应用中,特征衍生的操作可以更加复杂,根据具体的数据和问题领域选择合适的衍生方法。在这个例子中,我们将使用一个简单的数据集,包含两个特征("length" 和 "width"),然后创建一个新的特征 "area",它代表了长度和宽度的乘积。良好的特征可以提供更多的信息,使得算法能够更好地捕捉数据中的模式,从而提高预测或分类的准确性。特征衍生的目的是使得模型更容易理解、更具有解释性,同时提高模型的泛化能力,使其在新数据上的表现更好。: 选择最相关、最有代表性的特征,舍弃不相关或冗余的特征。原创 2023-10-12 14:54:28 · 939 阅读 · 0 评论 -
智能驾驶感知技术的综述与展望
基于计算机视觉的智能驾驶感知技术主要包括三个方面:环境感知、车辆感知和行人感知。其中,环境感知是指通过计算机对周围环境的感知和分析,包括道路、交通标志、路标、障碍物等;车辆感知是指通过计算机对车辆的感知和分析,包括车辆的类型、速度、方向等;行人感知是指通过计算机对行人的感知和分析,包括行人的位置、速度、行走方向等。 在实现智能驾驶感知技术的过程中,计算机视觉技术起到了至关重要的作用。计算机视觉技术可以通过图像处理、模式识别、机器学习等方法,对车辆周围环境进行感知和分析,从而实现自动驾驶的功能。原创 2023-09-13 17:51:32 · 2903 阅读 · 26 评论 -
YOLO是什么意思?
此外,YOLO 5还使用了一种称为Focal Loss的损失函数,该函数可以更好地处理类别不平衡的问题,从而提高了模型的精度。相比于传统的目标检测算法,如R-CNN、Fast R-CNN和Faster R-CNN等,YOLO算法具有更快的检测速度和更高的准确率。总的来说,YOLO 5的原理是将整个图像分成网格,通过主干网络提取特征,再通过输出层预测目标的类别和位置信息,从而实现目标检测。总之,YOLO算法是一种非常优秀的目标检测算法,具有快速、准确和端到端训练等优点,已经被广泛应用于计算机视觉领域。原创 2023-06-16 17:50:48 · 14346 阅读 · 0 评论 -
ChatGPT帮你做题目:用结构体存放下表中的数据,然后将每人的姓名和实发数(基本工资+浮动工资-支出)存放在文件“salary.dat”中
用结构体存放下表中的数据,然后将每人的姓名和实发数(基本工资+浮动工资-支出)存放在文件“salary.dat”中。姓名 lilili 基本工资 1029 浮动工资 13 支出 2。姓名 lili 基本工资 129 浮动工资 13 支出 2。姓名 li 基本工资 139 浮动工资 13 支出 2。原创 2023-05-06 17:57:33 · 1107 阅读 · 0 评论 -
为什么越来越多的企业开始选择云计算?
云计算是一种基于互联网的计算模式,它通过将计算资源、存储资源和应用程序等服务集中在云端,为用户提供高效、灵活、可扩展的计算资源和服务。云计算已经成为当今信息技术领域的重要趋势,它不仅可以提高企业的效率和竞争力,还可以为个人用户提供更加便捷的服务和体验。首先,云计算的重要性在于它可以帮助企业降低IT成本。传统的IT架构需要企业购买大量的硬件设备和软件许可证,而云计算可以将这些资源集中在云端,企业只需要按需使用,大大降低了IT成本。原创 2023-05-04 18:22:43 · 945 阅读 · 0 评论 -
基于Mediapipe手势识别
Mediapipe是谷歌开源的跨平台机器学习解决方案,其能够通过摄像头传输的视频数据,实时地检测出人体姿态、面部表情、手势等信息,并以可视化的形式进行展示,为各类应用提供了更加精准和智能的基础支持。2. 数据预处理:利用Mediapipe提供的深度学习模型,在采集到的图像数据上进行特征提取、归一化和降维等操作,以便进行后续的数据分析和模型训练。3. 模型训练:根据采集到的数据和手势分类标签,利用Mediapipe提供的机器学习算法,对手势图像进行分类和识别,输出对应的手势类别。看是否能够正常安装。原创 2023-05-01 13:25:18 · 2736 阅读 · 1 评论 -
ChatGPT真的有那么牛吗?
首先,李白是一名刺客英雄,非常适合进行单挑和切入敌方后排的任务。因此,在发育上,您需要注重提高李白的攻击力、攻击速度和爆发伤害,以便更好地发挥他的刺杀能力。在游戏开始时,您可以选择购买“猪崽铜锤”和“破军”,这些装备可以提高您的攻击力和爆发伤害。另外,您还可以购买一些“红药”和“蓝药”来增加自己的生命值和法力值,以便更好地在游戏中生存和发挥作用。在游戏中,您需要注意观察敌方英雄的位置和血量,选择合适的时机进行切入和攻击。当您成功刺杀一个敌方英雄后,立即回避敌方团队的攻击,等待自己的技能冷却时间结束后原创 2023-04-29 14:00:38 · 3814 阅读 · 11 评论 -
ChatGPT帮你调用PID算法【结合代码】
1. 比例(P)参数比例参数是最简单的一种参数,它根据偏差的大小来产生一个输出反馈。它的计算公式为:其中,Kp为比例系数,Error为控制变量与设定值之间的差值。比例参数是控制系统中最敏感的参数。它会直接影响系统的响应速度和稳态误差。2. 积分(I)参数积分参数用于纠正比例参数控制过程中产生的稳态误差。它的计算公式为:其中,Ki为积分系数,Error为控制变量与设定值之间的差值,dt是时间间隔。积分参数可以使系统产生更准确的控制效果,但如果积分参数调节不当,则会导致系统出现振荡和不稳定的情况。原创 2023-04-27 16:47:17 · 676 阅读 · 0 评论 -
人工智能学习总结
2. 了解机器学习:学会基本的机器学习算法(如SVM、决策树、聚类、KNN等),理解其对应的原理,并掌握实践中的应用。5. 有效评估模型:了解不同的模型评估方法(如准确率、召回率等),并根据不同情况选择正确的评估指标。4. 熟悉数据处理:学习数据预处理、可视化和清洗等数据处理技术,为机器学习模型的训练提供数据支持。3. 掌握Python:掌握Python的基本技能,使用Python来实现机器学习算法。1. 认识人工智能:了解人工智能的原理、发展历史和概念,以及当前研究进展。原创 2023-02-07 15:27:39 · 465 阅读 · 2 评论 -
非线性二分类——机器学习
为克服线性函数分类效果不足的问题,非线性分类器中引入了非线性函数来提升分类效果。非线性分类器用一个曲面或者多个超平(曲)面的组合将两组样本隔离开。一个典型的非线性分类器就是决策树,它的主要思想就是用多个线性分类器的组合来将两组样本隔离开。 决策树采用非常直观的方式来对样本进行分类,你只需要针对样本的特征问一系列问题就能将各样本分离开来。二、算法原理;线性分类:是用一个超平面能将正负样本区分开,表达式为y=wx,对于二维的情况,可以理解为一条直线,如一次函数。原创 2022-11-24 17:51:58 · 1890 阅读 · 0 评论 -
线性二分类——机器学习
此函数实际上是一个概率计算,它把[ − ∞ , ∞ ]之间的任何数字都压缩到[0,1]之间,返回一个概率值。给每个样本一系列的目标标签. 可以想象成一个数据点的各属性不是相互排斥的(一个水果既是苹果又是梨就是相互排斥的),表示分类任务有两个类别,比如我们想识别图片中是不是狗,也就是说,训练一个分类器,输入一幅图片,用特征向量x表示,阈值也不一定就是0.5,也可以是0.65等等,阈值越大,准确率越高,召回率越低;训练时,一个样本x在经过神经网络的最后一层的矩阵运算后的结果作为输入,通过对该方法的学习,原创 2022-11-24 17:23:49 · 1850 阅读 · 2 评论 -
双层神经网络实现非线性回归——机器学习
所以,我们先从激活函数学起,一类是挤压型的激活函数,常用于简单网络的学习;另一类是半线性的激活函数,常用于深度网络的学习。声明了在给定网络具有足够多的隐藏单元的条件下,配备一个线性输出层和一个带有任何挤压性质的激活函数的隐藏层的前馈神经网络,决定是否传递信号。在这种情况下,只需要带有一个参数(阈值)的简单阶梯函数。一般而言,我们构造的模型都是线性的,但是在实际应用过程中,遇到的很多问题其实是非线性的,这个时候,就需要在模型中应用激活函数,从而提高模型的性能。可以将连续值映射到0到1。原创 2022-11-24 15:52:48 · 1597 阅读 · 0 评论 -
线性回归的神经网络法——机器学习
根据现有的数据来求解该方程中的w和b。但由于实际问题中的数据x和y并不是都能被这个方程所描述,就像二维的散点图中,不能用一条直线来穿过所有的点,所以目标是要让这条直线能够穿过尽可能多的点,不在该直线上的点也能让它尽可能的离这条直线近。即要找到合适的w和b使得计算出来的y'与真实的y误差最小化。当给定从X的同分布中取样的新样本特征时, 这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。原创 2022-11-24 15:31:08 · 2243 阅读 · 0 评论 -
线性回归的梯度下降法——机器学习
线性回归求解可以使用最小二乘法和梯度下降法本质和目标相同,两种都是经典的学习算法,在给定已知数据的情况下,利用求导算出一个模型(函数),使得损失函数最小,然后对给定的新数据进行估算预测。损失函数的选择:最小二乘法必须使用平方损失函数,而梯度下降可以选取其它函数;实现方法不同,最小二乘法是实现全局最小,而梯度下降是一种迭代法;一般最小二乘法一定可以得到全局最小,但对于多元计算繁琐,且复杂情况下未必有解。而梯度下降的迭代比较简单,但找到的一般是局部最小,即极小值,原创 2022-11-24 15:19:45 · 846 阅读 · 0 评论 -
损失函数——机器学习
均方差函数常用于线性回归计算预测值和真实值之间的欧式距离。预测值和真实值越接近,两者的均方差就越小。交叉熵误差是一个-log函数,也就意味着,交叉熵误差值越小,神经网络在对应正确解标签的输出越接近1,即神经网络的判断和正确解标签越接近。原创 2022-11-23 20:39:24 · 1950 阅读 · 3 评论 -
梯度下降——机器学习
梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。缺点:靠近极小值时收敛速度减慢,求解需要很多次的迭代;一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。原创 2022-11-23 20:18:03 · 932 阅读 · 0 评论 -
反向传播——机器学习
反向传播就是要将神经网络的输出误差,一级又一级地传播到神经网络的输入。在该过程中,需要计算每一个权重对总的损失函数的影响, 即损失函数对每个权重的偏导。根据权重对误差的影响,再乘以步长,就可以更新整个神经网络的权重。当一次反向传播完成之后,网络的参数模型就可以得到更新。更新一轮之后,接着输入下一个样本, 算出误差后又可以更新一轮,再输入一个样本,又来更新一轮,通过不断地输入新的样本迭代地更新模型参数,就可以缩小计算值与真实值之间的误差,最终完成神经网络的训练。原创 2022-11-23 19:58:39 · 3012 阅读 · 1 评论 -
神经网络的基本工作原理——机器学习
神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果。原创 2022-11-23 19:45:53 · 1615 阅读 · 0 评论 -
最大似然估计(机器学习)
最大似然估计算法EM算法是一种最大似然估计(MaximumLikelihoodEstimation),传统的最大似然估计算法是根据已知的观察数据来评估模型参数最大似然估计的一般步骤如下:首先确保采集得到的样本数据是独立同分布的,这是最大似然估计的前提,这样才可以对于数据建立统一的概率分布模型。在这个前提下对于概率分布模型做出估计根据所假设的概率分布模型写出关于模型中的未知参数的似然函数。也就是概率关于未知参数的函数,问题就转变成了求解使得概率最大的未知参数的值。原创 2022-11-20 19:50:08 · 923 阅读 · 0 评论 -
基于网格的聚类STING、CLIQUE(机器学习)
算法先将空间区域划分为网格单元,然后通过使用密度阈值来识别稠密单元,将满足密度阈值的低维单元逐渐合并成高维单元,最后把邻接高维高密度单元组成簇。创建网格单元的集合,将数据空间划分为许多网格单元,然后以网格单元为单位计算每个单元中的对象数目。算法中,网格是分层次的,高层的单元被继续划分为低一层的单元,最终在个网格内的对象作为一个簇。基于网格的聚类与基于密度的聚类算法相比,基于网格的聚类运行速度更快,算法的时间复杂度更低。基于网格聚类的典型算法。原创 2022-11-20 19:33:29 · 2007 阅读 · 0 评论 -
居于层次的聚类、BIRCH、CURE、AGNES、DIANA(机器学习)
层次聚类算法可以揭示数据的分层结构,在树形结构上不同层次进行划分,可以得到不同粒度的聚类结果。按照层次聚类的过程分为自底向上的。层次聚类的应用 广泛程度 仅次于基于划分的聚类,核心思想就是通过对数据集按照层次,把数据划分到不同层的簇,目前大多数是自底向上的聚合聚类,自顶向下的分裂聚类比较少。直到满足算法终止条件为止。原创 2022-11-20 19:21:35 · 397 阅读 · 0 评论 -
基于密度的划分、DBSCAN(机器学习)
此外,当空间聚类的密度不均匀,聚类间距离相差很大时,聚类的质量较差。的影响较大,不同的输入参数对聚类结果有很大的影响,邻域参数也需要人工输入,调参时需要对两个参数联合调参,比较复杂。所以基于密度的聚类算法能够用于挖掘任意形状的簇,并且能够有效过滤掉噪声样本对于聚类结果的影响。能够在聚类的过程中发现数据集中的噪声点,且算法本身对噪声不敏感。基于划分聚类和基于层次聚类的方法在聚类过程中根据距离来划分类簇,因此只能够用于挖掘球状簇。这一算法的主要目的是过滤样本空间中的稀疏区域,获取稠密区域作为簇。原创 2022-11-20 19:12:32 · 594 阅读 · 0 评论 -
基于划分的方法、K-均值算法、K-medoids、K-prototype(机器学习)
在所有样本点都划分完毕后,根据划分情况重新计算各个簇的质心所在位置,然后迭代计算各个样本点到各簇质心的距离,对所有样本点重新进行划分。对剩余的每个样本点,计算它们到各个质心的欧式距离,并将其归入到相互间距离最小的质心所在的簇。作为代表对象代表这个簇,计算剩下的样本点与代表对象的距离,将样本点划分到与其距离最近的代表对象所在的簇中;均值聚类是基于划分的聚类算法,计算样本点与类簇质心的距离,与类簇质心相近的样本点划分为同一类簇。的影响很大,因为噪声点与其他样本点的距离远,在计算距离时会严重影响簇的中心。原创 2022-11-20 16:46:57 · 1242 阅读 · 0 评论