当我们希望以任意点为中心对图像进行旋转时,我们可以采用以下步骤和数学原理:
1. 确定旋转中心点:
假设我们有一个输入图像上的点P(x, y),我们想要将其绕旋转中心点C(cx, cy)逆时针旋转θ角度得到旋转后的点P’(x’, y’)。我们需要明确指定旋转中心点的坐标,可以是图像中的任意点。
2. 平移坐标系:
首先,我们需要将旋转中心点C移动到原点(0, 0),以便于旋转操作的计算。我们定义新的点P’’ ( x’’ , y’’ ),其中x’’ = x - cx,
y’’ = y - cy。
3. 旋转操作:
接下来,我们应用逆时针旋转θ角度的旋转矩阵R来旋转点P’’ 。旋转矩阵R可以表示为:
R=[[cos(θ), -sin(θ)],[sin(θ), cos(θ)] ]
这里,cos(θ)和sin(θ)分别代表旋转角度θ的余弦和正弦值。通过将点P’’ 与旋转矩阵R相乘,我们可以得到旋转后的点P’:P’ = R * P’’ 。这个乘法可以展开为以下形式:
x’ = cos(θ) * x’’ - sin(θ) * y’’
y’ = sin(θ) * x’’ + cos(θ) * y’’
将x’’ 和y’’ 替换回原始的坐标表示:
x’ = cos(θ) * (x - cx) - sin(θ) * (y - cy)
y’ = sin(θ) * (x - cx) + cos(θ) * (y - cy)
然后,我们可以通过将旋转中心点C平移回原来的位置来得到最终的旋转后的点P(x’, y’):
x’ = cos(θ) * (x - cx) - sin(θ) * (y - cy) + cx
y’ = sin(θ) * (x - cx) + cos(θ) * (y - cy) + cy
这些推导得到了旋转后的点P’(x’, y’)的数学公式。你可以使用这些公式来计算旋转后的每个像素点的坐标,并对图像进行旋转。
下面是一个使用OpenCV进行以任意点为中心进行图像旋转的示例代码:
import cv2
import numpy as np
# 读取图像
image = cv2.imread('input.jpg')
# 确定旋转中心点和旋转角度
center = (200, 200) # 以(200, 200)为中心点进行旋转
angle = 45
# 平移坐标系
M_translate = np.array([[1, 0, -center[0]],
[0, 1, -center[1]],
[0, 0, 1 ]])
# 旋转操作
theta = np.radians(angle)
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
M_rotate = np.array([[cos_theta, -sin_theta, 0],
[sin_theta, cos_theta, 0],
[0, 0, 1]])
# 反平移坐标系
M_translate_back = np.array([[1, 0, center[0]],
[0, 1, center[1]],
[0, 0, 1 ]])
# 构建仿射变换矩阵
M = np.matmul(np.matmul(np.matmul(M_translate_back, M_rotate), M_translate), M_translate_back[:2, :])
# 执行仿射变换
rotated_image = cv2.warpAffine(image, M[:2, :], (image.shape[1], image.shape[0]))
# 显示旋转后的图像
cv2.imshow('Rotated Image', rotated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
在这个示例中,我们首先构建了平移、旋转和反平移的变换矩阵:M_translate
、M_rotate
和M_translate_back
。然后,通过将这些矩阵相乘,得到最终的仿射变换矩阵M
。最后,我们使用warpAffine
函数将变换矩阵应用于原始图像,生成以任意点为中心旋转后的图像。通过调整旋转中心点和旋转角度,你可以在图像中实现任意点为中心的旋转效果。