opencv_python
文章平均质量分 75
使用python语言,学习opencv图像处理
Make_magic
不要轻易放弃,因为开始不容易。
展开
-
形态学操作—细化
在OpenCV中,图像形态学操作中的细化(Thinning)是一种用于图像处理的技术,其主要目的是通过迭代地删除图像中的像素点,以细化图像中对象的边界,使其保持尽可能多的细节信息同时减少像素点的数量。这在图像处理中常用于分析图像中的形状、结构和边缘信息。原创 2023-12-07 19:37:33 · 980 阅读 · 0 评论 -
形态学操作—凸壳
图像形态学是图像处理领域的重要概念,而凸壳(Convex Hull)是其中的一个常用操作。它可以用数学的角度解释为一个闭合区域,该区域包围了给定点集的最小凸多边形。原创 2023-12-07 19:27:03 · 625 阅读 · 0 评论 -
连通分量提取
图像形态学操作中的提取连通分量是一种用于分离图像中相互连接的像素区域的技术。这些像素区域通常代表着图像中的不同物体、目标或者区域。连通分量提取通常用于图像分割、对象识别、特征提取等领域。连通分量提取可以帮助识别图像中的独立对象或区域,从而有助于进行物体检测、图像分割、特征提取等任务。通过标记不同的连通分量,可以分离出图像中不同的目标。连通分量提取基于图像中像素的连接性。在这个过程中,通过寻找像素点之间的连接关系,将相邻的像素组合成具有特定特征的区域。处的像素值,通常是 0 或 1。原创 2023-12-06 20:02:15 · 1120 阅读 · 0 评论 -
泛洪填充(Flood Fill)
图像形态学是图像处理中的一种基础技术,泛洪填充(Flood Fill)是其中的一种操作,用于在图像中填充特定区域。原创 2023-12-06 19:53:24 · 698 阅读 · 1 评论 -
形态学操作—形态学梯度
形态学梯度(Morphological Gradient)是图像形态学处理中的一种操作,它通过对图像的膨胀和腐蚀操作之间的差异来突出图像中的边缘信息。形态学梯度的作用是突出图像中物体的边缘或轮廓。当我们对图像中的对象进行分割、边缘检测或特征提取时,形态学梯度可以很有用。它可以帮助定位物体的边界,提取轮廓信息,或者用于图像预处理的步骤之一。设定一个结构元素(通常是一个小的矩形或圆形核),然后对图像进行膨胀和腐蚀操作。形态学梯度被定义为图像的膨胀操作减去腐蚀操作的结果。原创 2023-12-05 19:12:38 · 826 阅读 · 0 评论 -
形态学操作—底帽运算
底帽运算(Bottom-hat transformation),也称为黑帽运算,是形态学图像处理中的一种操作。它与顶帽运算相反,通过闭运算的结果与原始图像的差异来突出图像中的暗区域特征。原创 2023-11-30 22:14:21 · 651 阅读 · 0 评论 -
形态学操作—顶帽运算
顶帽运算通过将原始图像与其开运算(Opening)之间的差异来实现。开运算是先对图像进行腐蚀操作,再进行膨胀操作,这样可以消除图像中的小物体,平滑物体的边界,并保留大物体的结构特征。顶帽运算则是用原始图像减去开运算后的图像,结果是突出了原始图像中的细小特征和细节。顶帽运算是图像形态学处理中的一种操作,用于突出图像中的细小亮度变化或者局部亮度的差异。这种操作能够凸显出图像中的细微细节,通常在图像增强、特征提取等领域有着广泛的应用。表示进行顶帽运算后得到的图像。原创 2023-11-27 19:09:06 · 518 阅读 · 0 评论 -
形态学操作—腐蚀
图像形态学操作是一种用于处理图像的技术,腐蚀(Erosion)是其中之一,它可以使图像中的物体边缘变得模糊或缩小。腐蚀操作利用结构元素(Kernel)在图像上滑动,将该结构元素覆盖区域内的像素值更新为邻域内像素值的最小值。这样可以减少图像中物体边缘的尺寸,去除小的噪点或连接物体等。结构元素的大小和形状会影响腐蚀的效果,更大的结构元素会导致更明显的腐蚀效果,而不同形状的结构元素也会对腐蚀产生不同的影响。是结构元素(Kernel)中的坐标。是腐蚀后的图像在位置。原创 2023-11-22 19:38:44 · 287 阅读 · 0 评论 -
形态学操作—膨胀
在 OpenCV 中,图像形态学操作是一组基于图像形状的处理技术,其中膨胀(Dilation)是其中之一。膨胀操作可用于图像处理中的特征增强、去噪、分割和边缘检测等。其基本原理是利用结构元素(Kernel 或 Structuring Element)对图像进行局部区域的最大值操作,将核与图像进行卷积,用核的最大值替代当前像素值,从而使目标物体区域扩张。膨胀操作可以根据具体的应用场景选择不同的结构元素大小和形状,以达到最佳效果。函数来进行图像的膨胀操作。膨胀操作的数学定义为:对于图像。原创 2023-11-22 19:30:17 · 770 阅读 · 0 评论 -
形态学操作—闭运算
闭运算(Closing)是图像形态学中的一种操作,它结合了膨胀(Dilation)和腐蚀(Erosion)操作。闭运算的原理是先对图像执行腐蚀操作,然后再进行膨胀操作。这个过程能够消除图像中的小孔洞,填充小的断裂,平滑物体的边界,以及连接窄的间隙。原创 2023-11-22 19:21:44 · 1116 阅读 · 1 评论 -
形态学操作—开运算
开运算是图像形态学处理中的一种操作,它由两个步骤组成:先进行腐蚀(Erosion),再进行膨胀(Dilation)。开运算的主要目的是消除图像中的小型噪点(白色噪点对应的是小型黑色区域,黑色噪点对应的是小型白色区域),同时保留图像中大型物体的结构特征。原创 2023-11-22 19:11:39 · 587 阅读 · 0 评论 -
图像傅里叶变换
傅里叶变换是一种数学工具,可用于将图像从空间域转换到频域,能够将图像表示为不同频率的正弦和余弦函数的叠加。傅里叶变换通常用于图像处理和分析,可以帮助理解图像中存在的频率信息和模式。原创 2023-11-21 19:44:57 · 283 阅读 · 0 评论 -
图像处理Scharr 算子
Scharr算子是用于图像边缘检测的一种算子,它类似于Sobel算子,但是对边缘的响应更加强烈。它可以用来检测图像中的边缘、轮廓等特征。原创 2023-11-21 19:31:27 · 1329 阅读 · 0 评论 -
图像处理Sobel 算子
Sobel算子是一种常用的图像处理算法,用于边缘检测。它利用了图像中灰度值的变化来识别边缘的位置。在OpenCV中,Sobel算子通常用于图像梯度计算,其中包括水平方向和垂直方向的梯度。这两个方向的梯度合并后可以得到图像的边缘信息。原创 2023-11-20 20:10:53 · 1637 阅读 · 3 评论 -
图像处理Laplacian 算子
在图像处理中,Laplacian算子是一种常用的图像处理技术,用于检测图像中的边缘和轮廓。OpenCV中的Laplacian算子是一种二阶微分算子,用于计算图像的拉普拉斯变换,以便突出图像中的边缘和特征。其原理是对图像进行二阶导数运算,寻找像素强度的变化情况,进而检测出图像中的边缘。函数来应用Laplacian算子。分别表示图像在水平和垂直方向上的二阶导数。在OpenCV中,可以使用。原创 2023-11-20 19:58:55 · 704 阅读 · 0 评论 -
图像导向滤波
导向滤波(Guided Filter)是一种基于局部线性模型的滤波方法,用于图像处理中的去噪、图像增强和边缘保留等任务。它结合了引导图像(guide image)和输入图像来实现对输入图像的滤波操作。原创 2023-11-19 20:49:28 · 626 阅读 · 0 评论 -
图像滤波处理
滤波处理是图像处理中常用的技术之一,用于去除图像中的噪声、平滑图像、边缘检测等。原创 2023-11-19 20:27:55 · 948 阅读 · 3 评论 -
可分离卷积核
在图像处理中,卷积操作是一种常用的技术,可分离卷积核(Separable Convolution Kernel)是一种特殊类型的卷积核,其可以分解成水平和垂直两个单独的核函数,这种分解使得卷积计算变得更加高效。原创 2023-11-15 19:54:03 · 313 阅读 · 0 评论 -
图像的卷积运算
卷积运算在图像处理中是一种重要的操作,它可以用于滤波、特征提取等多种图像处理任务中。在OpenCV中,卷积运算通常用于图像的滤波操作,比如平滑、边缘检测等。原创 2023-11-14 21:44:10 · 414 阅读 · 0 评论 -
直方图反向投影(Histogram Backprojection)
直方图反向投影的原理基于以下概念:我们首先要建立一个“目标颜色模型”的直方图,该直方图描述了我们希望检测的对象的颜色分布。然后,我们将这个目标颜色模型与输入图像进行比较,为输入图像的每个像素分配一个分数,以表示该像素属于目标对象的可能性。它的原理基于图像的颜色分布,允许我们在一幅图像中找到与给定对象颜色分布相匹配的区域。在这个示例中,我们首先从输入图像中选择了一个感兴趣的区域(ROI),然后将其转换为HSV颜色空间。函数计算了输入图像的反向投影,以显示目标对象可能存在的区域。原创 2023-09-03 10:57:47 · 484 阅读 · 0 评论 -
直方图统计增强方法
这种方法的目的是改善图像的视觉效果,使得图像中的细节更加清晰可见,从而提高图像在视觉上的识别和分析能力。通过将图像的像素值重新分布,使得图像的动态范围更好地覆盖了整个像素值域,凸显了图像中的细节,增强了图像的信息内容。直方图统计增强是一种基于像素值分布的图像增强技术,通过调整像素值的分布来增强图像的对比度和细节。其原理是根据图像的直方图信息,将原始像素值映射到一个新的像素值域,从而改变图像的亮度和对比度。函数 ( \text{round} ) 将结果四舍五入到最接近的整数,确保结果在合法的像素值范围内。原创 2023-08-31 22:14:35 · 1259 阅读 · 0 评论 -
自适应直方图均衡化(CLAHE)
当图像中存在广泛的对比度差异时,传统的直方图均衡化可能无法产生理想的结果。为了解决这个问题,引入了限制对比度自适应直方图均衡化(CLAHE)方法,它将图像分成小块,对每个小块进行直方图均衡化,并在均衡化过程中限制对比度增强的幅度。CLAHE 的意义在于它能够提高图像的视觉质量,同时避免了在局部区域过度增强对比度引起的噪声和伪影。4. 在进行直方图均衡化时,引入一个限制参数,它控制了对比度增强的程度。如果某个小块的直方图超过了这个限制,那么对比度增强会被限制,以避免过度增强。参数控制了对比度的限制程度,原创 2023-08-30 21:48:03 · 3198 阅读 · 2 评论 -
图像直方图匹配
直方图匹配通过调整图像的像素值,使得两张图像的直方图尽可能相似。这通常涉及到将输入图像的像素值映射到输出图像的像素值,以实现两者之间的分布匹配。通过将图像的像素值映射到更合适的范围,可以使图像在视觉上更加吸引人。当我们谈到图像直方图匹配,我们实际上是在讨论一种图像处理技术,它的目标是将一张图像的像素值分布调整到与另一张图像的像素值分布相匹配。3. 风格迁移:在计算机视觉中,可以使用直方图匹配来实现图像的风格迁移,将一个图像的风格应用于另一个图像。,我们希望将输入图像的像素值映射到输出图像的像素值。原创 2023-08-23 23:13:14 · 840 阅读 · 2 评论 -
图像直方图均衡化
直方图均衡化是一种常用的图像增强技术,旨在通过调整图像的像素值分布,提升图像的对比度和视觉质量。其原理是通过对图像的像素值进行变换,使得图像的直方图均匀分布,从而增强图像中的细节和特征。直方图均衡化的意义在于增强图像的对比度,使得图像中的细节更加清晰可见。直方图均衡化的核心思想是将原始图像的像素值映射到新的像素值,以使得新的像素值分布更加均匀。通过对比原始图像和均衡化后的图像,你可以观察到对比度的增加和细节的显著改善。3. 根据CDF对原始图像中的每个像素值进行映射,得到均衡化后的像素值。原创 2023-08-20 22:57:42 · 285 阅读 · 0 评论 -
图像的灰度直方图
当我们谈论图像的灰度直方图时,我们实际上在分析图像中像素的亮度级别分布。假设我们有一个10x10像素的图像,每个像素的亮度级别是0到255之间的一个数字。在这个图表中,x轴上的位置代表亮度级别,y轴上的高度代表具有该亮度级别的像素数量。:通过灰度直方图,我们可以判断图像的对比度是否适当,从而进行对比度的调整,使图像更具有视觉吸引力。:在一些应用中,可以根据灰度直方图的特征来检测特定的目标物体,例如在医学图像中检测病变区域。:根据灰度直方图的分布情况,可以进行直方图均衡化等操作,增强图像的细节和特征。原创 2023-08-17 21:12:16 · 1025 阅读 · 0 评论 -
图像的伽马变换
它在图像的像素值上应用一个幂次函数,以改变图像的灰度级分布,从而影响图像的感知亮度。伽马变换通常用于纠正显示器的非线性响应以及在低光照条件下拍摄的图像的亮度调整。伽马变换的原理:在图像处理中,原始图像的亮度与显示器或摄像机的响应并不总是线性关系。通过应用适当的伽马变换,可以纠正这种非线性响应,使图像在显示器上呈现更准确的亮度和对比度。伽马变换的意义和适用场景:伽马变换可以用于调整图像的感知亮度和对比度,使得图像在显示设备上或特定环境中更容易观察和分析。是伽马值,通常取大于0的实数。是输入图像的像素值,原创 2023-08-13 15:09:35 · 893 阅读 · 0 评论 -
图像的对数变换
这种变换可以将原始图像的像素值取对数,从而将较小的像素值扩展到较大的范围,同时压缩较大的像素值,以实现更好的视觉效果。这种变换的关键在于对数函数的性质,它可以将较小的正数映射到较大的范围,同时对较大的正数进行压缩。需要注意的是,在进行对数变换时,由于对数函数的定义域要求输入值大于零,因此在实际操作中,常常会先对像素值进行平移,以确保所有像素值都是正的。:通过对图像的像素值进行对数变换,可以增加图像的整体对比度,使其更具视觉吸引力。:对数变换可以将较大的像素值进行压缩,从而使得图像中的细节更加突出。原创 2023-08-08 22:17:34 · 1666 阅读 · 0 评论 -
图像的比特平面分层
比特平面分层(Bit-Plane Slicing)是一种在图像处理中常用的技术,它涉及将图像的像素值表示拆分成不同的二进制位平面。这些平面可以分别表示图像中的不同特征或信息,从而在图像分析、增强和压缩等方面提供了有用的工具。对于一幅灰度图像,每个像素点的像素值可以用8位二进制数表示(通常在0到255的范围内)。比特平面分层是将这些8位二进制数拆分成8个独立的平面,每个平面对应于一个特定的二进制位。比特平面分层的主要意义在于分解图像的信息,使我们可以观察和操作图像中的不同细节和特征。,它的8位二进制表示为。原创 2023-08-07 20:27:46 · 1603 阅读 · 0 评论 -
图像分段线性变换
图像分段线性变换(Piecewise Linear Transformation)是一种图像处理技术,它通过对不同区域的像素值应用不同的线性变换来调整图像的对比度和亮度。这通常用于增强图像中特定区域的细节或调整图像的整体外观。对于输入图像中的每个像素点。原创 2023-08-07 19:38:54 · 1935 阅读 · 0 评论 -
图像的线性变换
图像的线性变换是一种基本的像素值变换方法,它可以通过线性函数对图像中的每个像素值进行映射。灰度级拉伸是一种常见的图像增强方法,可以通过线性变换将图像的灰度级范围拉伸到整个像素值范围,从而增强图像的视觉效果。直方图均衡化也是一种常见的图像增强技术,通过线性变换使图像的直方图在灰度级上更均匀分布,提高图像的对比度。这个公式中的线性变换将输入图像的每个像素值按比例缩放,并且可以通过平移调整整个像素值范围的位置。在图像融合中,线性变换可以用于调整多幅图像的对比度和亮度,使得融合后的图像更自然和平滑。原创 2023-07-20 23:05:34 · 702 阅读 · 0 评论 -
图像的反色变化
在图像处理算法中,通过反色变换可以改变图像的亮度分布,从而影响算法的结果;总而言之,图像反色变换是通过对图像的像素值矩阵进行元素级操作,将每个像素的亮度值取反,从而改变图像的外观和对比度。反色变换的作用是将图像中每个像素的亮度值取反,即将亮部变暗,暗部变亮,从而改变图像的外观和视觉效果。它可以增强图像的对比度,使细节更加突出,并且产生独特的艺术效果。从数学矩阵的角度来看,反色变换可以被看作是一个元素级的矩阵操作。图像的反色变换涉及到图像的像素值矩阵的变换。相减,得到输出图像的像素值矩阵。原创 2023-07-13 20:48:09 · 751 阅读 · 0 评论 -
大律算法的原理
大律算法(Otsu’s method)是一种常用的图像阈值化算法,它通过最大化类间方差来确定最佳阈值。下面将从数学原理的角度详细介绍大律算法,并给出推导过程。通过以上推导过程,我们可以得到大律算法的数学原理,并可以利用该算法对图像进行阈值化处理,实现图像分割、目标检测等应用。原创 2023-06-27 23:11:20 · 464 阅读 · 0 评论 -
图像的二值处理
【代码】图像的二值处理。原创 2023-06-27 22:25:32 · 1898 阅读 · 0 评论 -
图像的灰度处理
1. 亮度法(Luminosity Method):灰度图像的亮度法是通过对彩色图像的RGB通道进行加权平均来计算灰度值。与亮度法不同的是,加权平均法使用了不同的权重系数,通常使用以下公式计算每个像素的灰度值,该方法简单地对三个通道进行均值计算,没有考虑人眼对不同通道的敏感度差异。1. 降低数据维度:彩色图像通常包含了大量的冗余信息,而灰度图像只保留了图像的亮度信息。灰度处理的原理是将彩色图像转换为灰度图像,即将每个像素的颜色信息转换为单一的灰度值。原创 2023-06-26 22:22:03 · 2809 阅读 · 0 评论 -
直角坐标和极坐标
通过将图像从直角坐标系转换为极坐标系,可以将圆形图案边缘上的文字排列在新图像的边缘,使得文字的识别和检测更加方便。总而言之,极坐标和直角坐标的互相转换提供了在不同坐标系之间进行方便的变换和处理的能力,可以在图像处理、几何计算和其他领域中发挥重要作用。在二维极坐标系中,一个点的位置由两个坐标值(r,θ)表示,其中r表示点到原点的距离,θ表示点与参考线的夹角。在二维直角坐标系中,一个点的位置由两个坐标值(x,y)表示,其中x表示点在水平方向上的位置,y表示点在垂直方向上的位置。原创 2023-06-26 21:24:44 · 5027 阅读 · 0 评论 -
图像的透视变换
假设原始图像中的四个点为 A、B、C和D,对应的目标图像中的四个点为 A’、B’、C’和D’。给定原始图像中的四个非共线点和目标图像中对应的四个点,可以通过计算透视变换矩阵来建立两个平面之间的对应关系。透视变换的意义在于可以改变图像的视角和形状,使得图像在新的视平面上更符合特定需求。它可以提供更好的图像展示效果、改善图像质量,并为后续的图像处理任务提供更准确的输入。总之,透视变换是一种强大的图像处理技术,可以对图像进行透视变换,改变视角和形状,广泛应用于计算机视觉、图像处理和图形学领域。原创 2023-06-24 23:02:54 · 2181 阅读 · 0 评论 -
图像的错切
在OpenCV中,图像的错切是一种基于几何变换的图像处理技术,用于对图像进行非垂直投影,从而在水平或垂直方向上引入扭曲效果。错切变换可以通过改变像素点在投影平面上的坐标来实现图像的扭曲。是垂直方向上的错切系数。这样,可以使用3x3的矩阵来表示图像的错切变换,并进行矩阵乘法运算来实现对图像的扭曲效果。是经过水平错切变换后的像素点坐标,是经过垂直错切变换后的像素点坐标,是原始图像中的像素点坐标,是原始图像中的像素点坐标,是水平方向上的错切系数。原创 2023-06-23 15:46:36 · 1721 阅读 · 0 评论 -
图像金字塔
图像金字塔的作用和意义是提供了一种多尺度分析和图像重建的方法。高斯金字塔可以用于图像的分辨率降低和图像压缩,而拉普拉斯金字塔可以用于图像的重建、增强和融合。在OpenCV中,图像金字塔是一种将原始图像以金字塔形状排列的方式进行分解和重建的技术。它由两个主要的金字塔类型组成:高斯金字塔(Gaussian pyramid)和拉普拉斯金字塔(Laplacian pyramid)。需要注意的是,为了确保上采样后的图像与下一层金字塔图像具有相同的尺寸,通常在上采样之前会先进行填充操作。其中,* 表示卷积操作,原创 2023-06-23 14:53:50 · 659 阅读 · 0 评论 -
图像的缩放
双三次插值:双三次插值是一种更复杂的插值方法,它考虑了目标像素周围16个最近的像素值。通过计算目标像素与周围像素的距离和权重,并使用三次多项式进行插值,双三次插值可以提供更高的图像质量,但计算复杂度也更高。最近邻插值:最近邻插值是一种简单的插值方法,它将目标像素的值设置为原始图像中最近的像素的值。目标检测和识别:图像缩放可以将目标对象缩小或放大到合适的尺寸,使得目标检测和识别算法能够在不同尺度的图像上进行有效的分析和判断。图像质量要求较高的情况,其中双三次插值通常提供更好的结果,但也需要更多的计算资源。原创 2023-06-22 23:00:52 · 1274 阅读 · 0 评论 -
图像的翻转
翻转后,图像中每个像素点的新坐标为 (x’, y’),其中 x’ 的计算公式为 x’ = x,而 y’ 的计算公式为 y’ = h - 1 - y。这里的 h 是图像的高度,即图像的行数。翻转后,图像中每个像素点的新坐标为 (x’, y’),其中 x’ 的计算公式为 x’ = w - 1 - x,而 y’ 的计算公式为 y’ = y。翻转后,图像中每个像素点的新坐标为 (x’, y’),其中 x’ 的计算公式为 x’ = w - 1 - x,而 y’ 的计算公式为 y’ = h - 1 - y。原创 2023-06-22 22:05:01 · 2188 阅读 · 0 评论