1. 滤波器的窄过渡带
- 窄过渡带:指滤波器在保留信号有用频率(低频)和去除无用频率(高频)之间切换得非常“快”或“精确”。
- 例如,滤波器保留频率范围是0–200 Hz,但要严格去除超过210 Hz的频率(中间只有10 Hz的过渡带),这就需要更长的滤波器长度。
- 滤波器长度长:需要更多的系数和更多的乘法运算,计算量大。
2. 降采样优化滤波器
- 降低采样率的好处:
- 采样率越高,信号的频谱越宽(最高频率等于采样率的一半)。
- 如果降低采样率,频谱会变窄,滤波器需要处理的频率范围也变小,从而简化滤波器设计。
- 因为低采样率下的频率范围小,滤波器的过渡带要求会降低,因此滤波器长度可以缩短,乘法运算量减少。
3. 防止混叠的必要性
- 混叠:当降采样率过低,高频信号会折叠(aliasing)到低频,导致信号失真。
- 在降低采样率之前,需要先用低通滤波器将高于新采样率一半的频率(奈奎斯特频率)去掉,避免混叠。
4. 恢复原始采样率
- 如果后续系统需要原始采样率的信号(例如,原信号是高采样率的语音,最终输出也需要高采样率),就需要插值(提高采样率)。
- 插值时,可以通过将降采样后的信号“填补”到原始采样率。
- 这个过程也需要设计滤波器,但计算量通常比直接处理原始高采样率的信号低。
举个例子
假设我们有一个语音信号,采样率是44.1 kHz(标准CD采样率),需要提取1 kHz以下的低频信号。
-
原始滤波器设计的复杂性:
- 如果直接处理44.1 kHz的信号,滤波器必须去掉高于1 kHz的频率,且不能影响1 kHz附近的频率(需要非常窄的过渡带)
- 这样的滤波器需要很长,运算量很大。
-
降采样优化滤波器:
- 降低采样率,比如降到8 kHz,此时频谱范围是0–4 kHz。
- 新的滤波器只需要去掉高于1 kHz的频率,设计要求变宽,运算量减少。
-
避免混叠:
- 在降采样之前,先用一个低通滤波器去除高于4 kHz的频率(防止降采样后混叠)。
-
插值还原信号:
- 如果最终系统仍需44.1 kHz采样率,则可以用插值将8 kHz信号扩展回44.1 kHz。
总结
这段话强调:
- 降采样后进行滤波器设计可以减少运算量;
- 需要在降采样前用低通滤波器防止混叠;
- 如果需要恢复原采样率信号,则可以通过插值实现。
2326

被折叠的 条评论
为什么被折叠?



