时域平均功率,频域平均功率,功率谱密度 公式和例子

对于功率信号(Power Signal),它与能量信号的区别在于:功率信号没有有限的总能量(无限长信号),但在任意有限时间内的平均功率是有限的。


1. 功率信号的时域能量计算

时域平均功率公式

对于周期性离散时间信号 x ( n ) x(n) x(n),其 时域平均功率 定义为:
P x = 1 N ∑ n = 0 N − 1 ∣ x ( n ) ∣ 2 P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 Px=N1n=0N1x(n)2

  • 意义
    • 计算一个周期内信号的平均功率,用于衡量信号在时间域的强度。
  • 适用范围
    • x ( n ) x(n) x(n) 必须是周期性信号,周期为 N N N
  • 推导
    对于周期性信号 x ( n ) x(n) x(n),它满足:
    x ( n ) = x ( n + N ) , ∀ n x(n) = x(n+N), \quad \forall n x(n)=x(n+N),n
    因此,总功率需要归一化到一个周期内计算。

2. 频域功率计算

频域功率公式

根据 Parseval 定理,周期信号的时域功率与频域功率相等:
P x = ∑ k = 0 N − 1 ∣ c k ∣ 2 P_x = \sum_{k=0}^{N-1} |c_k|^2 Px=k=0N1ck2

  • 这里 c k c_k ck 是信号的 傅里叶级数系数,定义为:
    c k = 1 N ∑ n = 0 N − 1 x ( n ) e − j 2 π k n N c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k n}{N}} ck=N1n=0N1x(n)ejN2πkn
  • 意义
    • 频域功率是每个频率分量的平方和,表示信号在频率域的能量分布。
推导

根据 Parseval 定理:
1 N ∑ n = 0 N − 1 ∣ x ( n ) ∣ 2 = ∑ k = 0 N − 1 ∣ c k ∣ 2 \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 = \sum_{k=0}^{N-1} |c_k|^2 N1n=0N1x(n)2=k=0N1ck2
两边的物理意义分别是:

  • 左边:时域的平均功率。
  • 右边:频域的平均功率。

3. 功率谱密度(Power Spectral Density, PSD)

定义

功率谱密度 S x x ( f ) S_{xx}(f) Sxx(f) 表示信号在频率域上的功率分布,是信号在单位频率范围内的功率:
S x x ( f ) = ∣ C ( f ) ∣ 2 S_{xx}(f) = |C(f)|^2 Sxx(f)=C(f)2

  • C ( f ) C(f) C(f) 是信号的傅里叶变换(或傅里叶级数),定义为:
    C ( f ) = ∫ − ∞ ∞ x ( t ) e − j 2 π f t d t C(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt C(f)=x(t)ej2πftdt
  • 意义
    • PSD 描述信号在频率域上的功率强度分布。
    • 它不包含相位信息,只关注功率分量。
计算功率的公式

总功率可以通过 PSD 积分得到:
P x = ∫ − ∞ ∞ S x x ( f ) d f P_x = \int_{-\infty}^\infty S_{xx}(f) df Px=Sxx(f)df


4. 时域、频域功率及功率谱密度的联系

计算方法公式条件
时域平均功率$P_x = \frac{1}{N} \sum_{n=0}^{N-1}x(n)
频域平均功率$P_x = \sum_{k=0}^{N-1}c_k
功率谱密度 (PSD)$S_{xx}(f) =C(f)

5. 示例:周期信号的功率计算

信号定义

假设信号 x ( n ) = cos ⁡ ( 2 π f 0 n ) ,   n ∈ Z x(n) = \cos(2\pi f_0 n), \, n \in \mathbb{Z} x(n)=cos(2πf0n),nZ,周期为 N = 1 f 0 N = \frac{1}{f_0} N=f01

  1. 时域平均功率
    P x = 1 N ∑ n = 0 N − 1 ∣ x ( n ) ∣ 2 P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 Px=N1n=0N1x(n)2

    • 对于正弦波:
      ∣ x ( n ) ∣ 2 = cos ⁡ 2 ( 2 π f 0 n ) |x(n)|^2 = \cos^2(2\pi f_0 n) x(n)2=cos2(2πf0n)
    • 使用 cos ⁡ 2 ( θ ) = 1 2 ( 1 + cos ⁡ ( 2 θ ) ) \cos^2(\theta) = \frac{1}{2} (1 + \cos(2\theta)) cos2(θ)=21(1+cos(2θ)),计算结果为:
      P x = 1 2 P_x = \frac{1}{2} Px=21
  2. 频域平均功率

    • 傅里叶级数系数为:
      c k = { 1 2 , k = ± f 0 0 , 其他 c_k = \begin{cases} \frac{1}{2}, & k = \pm f_0 \\ 0, & \text{其他} \end{cases} ck={21,0,k=±f0其他
    • 频域功率为:
      P x = ∣ c f 0 ∣ 2 + ∣ c − f 0 ∣ 2 = 1 4 + 1 4 = 1 2 P_x = |c_{f_0}|^2 + |c_{-f_0}|^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} Px=cf02+cf02=41+41=21
  3. 功率谱密度

    • 功率谱密度为:
      S x x ( f ) = 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{4} \delta(f-f_0) + \frac{1}{4} \delta(f+f_0) Sxx(f)=41δ(ff0)+41δ(f+f0)
    • 频域总功率通过积分验证:
      P x = ∫ − ∞ ∞ S x x ( f ) d f = 1 4 + 1 4 = 1 2 P_x = \int_{-\infty}^\infty S_{xx}(f) df = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} Px=Sxx(f)df=41+41=21

功率谱密度 S x x ( f ) = 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{4} \delta(f - f_0) + \frac{1}{4} \delta(f + f_0) Sxx(f)=41δ(ff0)+41δ(f+f0) 的来源可以通过信号的频谱分析来详细解释。


5.1. 信号定义和背景

假设信号为:
x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2\pi f_0 t) x(t)=cos(2πf0t)

  • 性质

    • 这是一个周期信号,频率为 f 0 f_0 f0,周期为 T 0 = 1 f 0 T_0 = \frac{1}{f_0} T0=f01
    • 它在频域上只有两个分量,对应正频率 f 0 f_0 f0 和负频率 − f 0 -f_0 f0
  • 傅里叶变换

    • x ( t ) x(t) x(t) 的傅里叶变换表示为:
      X ( f ) = ∫ − ∞ ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^\infty x(t) e^{-j2\pi f t} dt X(f)=x(t)ej2πftdt
    • 对于 x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2\pi f_0 t) x(t)=cos(2πf0t),使用欧拉公式:
      cos ⁡ ( 2 π f 0 t ) = 1 2 ( e j 2 π f 0 t + e − j 2 π f 0 t ) \cos(2\pi f_0 t) = \frac{1}{2} \left( e^{j2\pi f_0 t} + e^{-j2\pi f_0 t} \right) cos(2πf0t)=21(ej2πf0t+ej2πf0t)
      可以得到:
      X ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) X(f)=21δ(ff0)+21δ(f+f0)

5.2. 功率谱密度的定义

功率谱密度 S x x ( f ) S_{xx}(f) Sxx(f) 定义为信号频率分量的平方模:
S x x ( f ) = ∣ X ( f ) ∣ 2 S_{xx}(f) = |X(f)|^2 Sxx(f)=X(f)2

  • 对于傅里叶变换结果:
    X ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) X(f)=21δ(ff0)+21δ(f+f0)
  • 求模的平方:
    S x x ( f ) = ∣ 1 2 δ ( f − f 0 ) ∣ 2 + ∣ 1 2 δ ( f + f 0 ) ∣ 2 S_{xx}(f) = \left| \frac{1}{2} \delta(f - f_0) \right|^2 + \left| \frac{1}{2} \delta(f + f_0) \right|^2 Sxx(f)= 21δ(ff0) 2+ 21δ(f+f0) 2

5.3. 为什么是 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) \frac{1}{4} \delta(f - f_0) + \frac{1}{4} \delta(f + f_0) 41δ(ff0)+41δ(f+f0)

δ 函数的平方特性
  • 对于冲激函数 δ ( f ) \delta(f) δ(f),平方结果仍然是 δ ( f ) \delta(f) δ(f) 本身,但需要考虑系数:
    ( A δ ( f ) ) 2 = A 2 δ ( f ) \left( A \delta(f) \right)^2 = A^2 \delta(f) (Aδ(f))2=A2δ(f)
  • 因此:
    S x x ( f ) = 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{4} \delta(f - f_0) + \frac{1}{4} \delta(f + f_0) Sxx(f)=41δ(ff0)+41δ(f+f0)
物理意义
  • 信号 x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2\pi f_0 t) x(t)=cos(2πf0t) 的频率分量分布在 f 0 f_0 f0 − f 0 -f_0 f0 两个频率处。
  • 每个频率分量的能量分布为:
    功率密度谱的强度 = 1 4 \text{功率密度谱的强度} = \frac{1}{4} 功率密度谱的强度=41
  • 总功率由这两个分量加和给出:
    P x = ∫ − ∞ ∞ S x x ( f ) d f = 1 4 + 1 4 = 1 2 P_x = \int_{-\infty}^\infty S_{xx}(f) df = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} Px=Sxx(f)df=41+41=21
    这与时域平均功率一致。

6. 总结

  1. 时域平均功率 通过一个周期的平方和计算。
  2. 频域平均功率 是各频率分量平方和。
  3. 功率谱密度 表示信号在频率上的功率分布,积分结果与时域一致。
    功率信号的特点 是在任意时间窗口内有有限平均功率,但没有有限总能量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值