对于功率信号(Power Signal),它与能量信号的区别在于:功率信号没有有限的总能量(无限长信号),但在任意有限时间内的平均功率是有限的。
1. 功率信号的时域能量计算
时域平均功率公式:
对于周期性离散时间信号
x
(
n
)
x(n)
x(n),其 时域平均功率 定义为:
P
x
=
1
N
∑
n
=
0
N
−
1
∣
x
(
n
)
∣
2
P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2
Px=N1n=0∑N−1∣x(n)∣2
- 意义:
- 计算一个周期内信号的平均功率,用于衡量信号在时间域的强度。
- 适用范围:
- x ( n ) x(n) x(n) 必须是周期性信号,周期为 N N N。
- 推导:
对于周期性信号 x ( n ) x(n) x(n),它满足:
x ( n ) = x ( n + N ) , ∀ n x(n) = x(n+N), \quad \forall n x(n)=x(n+N),∀n
因此,总功率需要归一化到一个周期内计算。
2. 频域功率计算
频域功率公式:
根据 Parseval 定理,周期信号的时域功率与频域功率相等:
P
x
=
∑
k
=
0
N
−
1
∣
c
k
∣
2
P_x = \sum_{k=0}^{N-1} |c_k|^2
Px=k=0∑N−1∣ck∣2
- 这里
c
k
c_k
ck 是信号的 傅里叶级数系数,定义为:
c k = 1 N ∑ n = 0 N − 1 x ( n ) e − j 2 π k n N c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k n}{N}} ck=N1n=0∑N−1x(n)e−jN2πkn - 意义:
- 频域功率是每个频率分量的平方和,表示信号在频率域的能量分布。
推导:
根据 Parseval 定理:
1
N
∑
n
=
0
N
−
1
∣
x
(
n
)
∣
2
=
∑
k
=
0
N
−
1
∣
c
k
∣
2
\frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 = \sum_{k=0}^{N-1} |c_k|^2
N1n=0∑N−1∣x(n)∣2=k=0∑N−1∣ck∣2
两边的物理意义分别是:
- 左边:时域的平均功率。
- 右边:频域的平均功率。
3. 功率谱密度(Power Spectral Density, PSD)
定义:
功率谱密度
S
x
x
(
f
)
S_{xx}(f)
Sxx(f) 表示信号在频率域上的功率分布,是信号在单位频率范围内的功率:
S
x
x
(
f
)
=
∣
C
(
f
)
∣
2
S_{xx}(f) = |C(f)|^2
Sxx(f)=∣C(f)∣2
-
C
(
f
)
C(f)
C(f) 是信号的傅里叶变换(或傅里叶级数),定义为:
C ( f ) = ∫ − ∞ ∞ x ( t ) e − j 2 π f t d t C(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt C(f)=∫−∞∞x(t)e−j2πftdt - 意义:
- PSD 描述信号在频率域上的功率强度分布。
- 它不包含相位信息,只关注功率分量。
计算功率的公式:
总功率可以通过 PSD 积分得到:
P
x
=
∫
−
∞
∞
S
x
x
(
f
)
d
f
P_x = \int_{-\infty}^\infty S_{xx}(f) df
Px=∫−∞∞Sxx(f)df
4. 时域、频域功率及功率谱密度的联系
计算方法 | 公式 | 条件 |
---|---|---|
时域平均功率 | $P_x = \frac{1}{N} \sum_{n=0}^{N-1} | x(n) |
频域平均功率 | $P_x = \sum_{k=0}^{N-1} | c_k |
功率谱密度 (PSD) | $S_{xx}(f) = | C(f) |
5. 示例:周期信号的功率计算
信号定义:
假设信号 x ( n ) = cos ( 2 π f 0 n ) , n ∈ Z x(n) = \cos(2\pi f_0 n), \, n \in \mathbb{Z} x(n)=cos(2πf0n),n∈Z,周期为 N = 1 f 0 N = \frac{1}{f_0} N=f01。
-
时域平均功率:
P x = 1 N ∑ n = 0 N − 1 ∣ x ( n ) ∣ 2 P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 Px=N1n=0∑N−1∣x(n)∣2- 对于正弦波:
∣ x ( n ) ∣ 2 = cos 2 ( 2 π f 0 n ) |x(n)|^2 = \cos^2(2\pi f_0 n) ∣x(n)∣2=cos2(2πf0n) - 使用
cos
2
(
θ
)
=
1
2
(
1
+
cos
(
2
θ
)
)
\cos^2(\theta) = \frac{1}{2} (1 + \cos(2\theta))
cos2(θ)=21(1+cos(2θ)),计算结果为:
P x = 1 2 P_x = \frac{1}{2} Px=21
- 对于正弦波:
-
频域平均功率:
- 傅里叶级数系数为:
c k = { 1 2 , k = ± f 0 0 , 其他 c_k = \begin{cases} \frac{1}{2}, & k = \pm f_0 \\ 0, & \text{其他} \end{cases} ck={21,0,k=±f0其他 - 频域功率为:
P x = ∣ c f 0 ∣ 2 + ∣ c − f 0 ∣ 2 = 1 4 + 1 4 = 1 2 P_x = |c_{f_0}|^2 + |c_{-f_0}|^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} Px=∣cf0∣2+∣c−f0∣2=41+41=21
- 傅里叶级数系数为:
-
功率谱密度:
- 功率谱密度为:
S x x ( f ) = 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{4} \delta(f-f_0) + \frac{1}{4} \delta(f+f_0) Sxx(f)=41δ(f−f0)+41δ(f+f0) - 频域总功率通过积分验证:
P x = ∫ − ∞ ∞ S x x ( f ) d f = 1 4 + 1 4 = 1 2 P_x = \int_{-\infty}^\infty S_{xx}(f) df = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} Px=∫−∞∞Sxx(f)df=41+41=21
- 功率谱密度为:
功率谱密度 S x x ( f ) = 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{4} \delta(f - f_0) + \frac{1}{4} \delta(f + f_0) Sxx(f)=41δ(f−f0)+41δ(f+f0) 的来源可以通过信号的频谱分析来详细解释。
5.1. 信号定义和背景
假设信号为:
x
(
t
)
=
cos
(
2
π
f
0
t
)
x(t) = \cos(2\pi f_0 t)
x(t)=cos(2πf0t)
-
性质:
- 这是一个周期信号,频率为 f 0 f_0 f0,周期为 T 0 = 1 f 0 T_0 = \frac{1}{f_0} T0=f01。
- 它在频域上只有两个分量,对应正频率 f 0 f_0 f0 和负频率 − f 0 -f_0 −f0。
-
傅里叶变换:
-
x
(
t
)
x(t)
x(t) 的傅里叶变换表示为:
X ( f ) = ∫ − ∞ ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^\infty x(t) e^{-j2\pi f t} dt X(f)=∫−∞∞x(t)e−j2πftdt - 对于
x
(
t
)
=
cos
(
2
π
f
0
t
)
x(t) = \cos(2\pi f_0 t)
x(t)=cos(2πf0t),使用欧拉公式:
cos ( 2 π f 0 t ) = 1 2 ( e j 2 π f 0 t + e − j 2 π f 0 t ) \cos(2\pi f_0 t) = \frac{1}{2} \left( e^{j2\pi f_0 t} + e^{-j2\pi f_0 t} \right) cos(2πf0t)=21(ej2πf0t+e−j2πf0t)
可以得到:
X ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) X(f)=21δ(f−f0)+21δ(f+f0)
-
x
(
t
)
x(t)
x(t) 的傅里叶变换表示为:
5.2. 功率谱密度的定义
功率谱密度
S
x
x
(
f
)
S_{xx}(f)
Sxx(f) 定义为信号频率分量的平方模:
S
x
x
(
f
)
=
∣
X
(
f
)
∣
2
S_{xx}(f) = |X(f)|^2
Sxx(f)=∣X(f)∣2
- 对于傅里叶变换结果:
X ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) X(f)=21δ(f−f0)+21δ(f+f0) - 求模的平方:
S x x ( f ) = ∣ 1 2 δ ( f − f 0 ) ∣ 2 + ∣ 1 2 δ ( f + f 0 ) ∣ 2 S_{xx}(f) = \left| \frac{1}{2} \delta(f - f_0) \right|^2 + \left| \frac{1}{2} \delta(f + f_0) \right|^2 Sxx(f)= 21δ(f−f0) 2+ 21δ(f+f0) 2
5.3. 为什么是 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) \frac{1}{4} \delta(f - f_0) + \frac{1}{4} \delta(f + f_0) 41δ(f−f0)+41δ(f+f0)?
δ 函数的平方特性:
- 对于冲激函数
δ
(
f
)
\delta(f)
δ(f),平方结果仍然是
δ
(
f
)
\delta(f)
δ(f) 本身,但需要考虑系数:
( A δ ( f ) ) 2 = A 2 δ ( f ) \left( A \delta(f) \right)^2 = A^2 \delta(f) (Aδ(f))2=A2δ(f) - 因此:
S x x ( f ) = 1 4 δ ( f − f 0 ) + 1 4 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{4} \delta(f - f_0) + \frac{1}{4} \delta(f + f_0) Sxx(f)=41δ(f−f0)+41δ(f+f0)
物理意义:
- 信号 x ( t ) = cos ( 2 π f 0 t ) x(t) = \cos(2\pi f_0 t) x(t)=cos(2πf0t) 的频率分量分布在 f 0 f_0 f0 和 − f 0 -f_0 −f0 两个频率处。
- 每个频率分量的能量分布为:
功率密度谱的强度 = 1 4 \text{功率密度谱的强度} = \frac{1}{4} 功率密度谱的强度=41 - 总功率由这两个分量加和给出:
P x = ∫ − ∞ ∞ S x x ( f ) d f = 1 4 + 1 4 = 1 2 P_x = \int_{-\infty}^\infty S_{xx}(f) df = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} Px=∫−∞∞Sxx(f)df=41+41=21
这与时域平均功率一致。
6. 总结
- 时域平均功率 通过一个周期的平方和计算。
- 频域平均功率 是各频率分量平方和。
- 功率谱密度 表示信号在频率上的功率分布,积分结果与时域一致。
功率信号的特点 是在任意时间窗口内有有限平均功率,但没有有限总能量。