v ∝ 1 m α 其中 α ≈ 1 v \propto \frac{1}{m^\alpha} \quad \text{其中 } \alpha \approx 1 v∝mα1其中 α≈1
一、电泳基本力学模型复习
在电场中带电粒子受到两个力:
-
电场力(推它跑)
F 电 = q E F_{\text{电}} = qE F电=qE- q q q:粒子所带电荷
- E E E:电场强度
-
摩擦力(阻止它跑)
F 摩 = f v F_{\text{摩}} = fv F摩=fv- f f f:摩擦系数(取决于形状、大小、黏度、介质结构)
- v v v:稳定运行时的速度
当达到匀速(steady state)时:
q E = f v ⇒ v = q E f qE = fv \quad \Rightarrow \quad v = \frac{qE}{f} qE=fv⇒v=fqE
二、SDS 加入后的两个变化(关键)
变化 1:电荷 q q q 与质量 m m m 成正比
为什么?
- SDS 每两个氨基酸分子附着一个负电荷
- 蛋白越大 ⇒ 氨基酸越多 ⇒ SDS 越多 ⇒ 总负电荷越多
所以:
q ∝ m q \propto m q∝m
即:蛋白的总电荷与它的质量成正比
变化 2:摩擦阻力 f f f 与质量 m m m 的关系
这个更难理解一些,但我们可以这样想:
- 在 SDS-PAGE 中,阻力来自于凝胶的网状结构对蛋白“通行”的阻碍
- 实验发现:大分子越大,被凝胶“卡住”的概率越高,阻力越大
所以经验上:
f ∝ m α 其中 α ≈ 1 f \propto m^\alpha \quad \text{其中 } \alpha \approx 1 f∝mα其中 α≈1
这不是一个简单几何形状推出来的,而是大量经验数据拟合的结果(由 Laemmli 等人提出)
三、代入推导公式
我们回到原式:
v = q E f v = \frac{qE}{f} v=fqE
现在代入两个比例关系:
- q ∝ m q \propto m q∝m
- f ∝ m α f \propto m^\alpha f∝mα
所以:
v ∝ m m α = 1 m α − 1 v \propto \frac{m}{m^\alpha} = \frac{1}{m^{\alpha - 1}} v∝mαm=mα−11
如果 α = 1 \alpha = 1 α=1,那么:
v ∝ 1 m 0 = 常数 v \propto \frac{1}{m^0} = \text{常数} v∝m01=常数
这代表:如果阻力和电荷都正比于质量 ⇒ 大小就不影响速度
但实验中不是这样。
实际上,在凝胶中观察到:
v ∝ 1 m α ( α ≈ 1 ) v \propto \frac{1}{m^\alpha} \quad (\alpha \approx 1) v∝mα1(α≈1)
也就是说,迁移速度和质量大致成反比。
四、实验现象:迁移距离和 log(质量) 成反比
因为电泳一般跑一段时间之后记录迁移距离 d d d,它与速度成正比:
d = v ⋅ t ( 时间固定 ) d = v \cdot t \quad (\text{时间固定}) d=v⋅t(时间固定)
所以:
d ∝ 1 m α ⇒ log m ∝ − d d \propto \frac{1}{m^\alpha} \quad \Rightarrow \quad \log m \propto -d d∝mα1⇒logm∝−d
也就是说:
- 跑得越远 ⇒ 分子质量越小
- log(分子质量) vs 迁移距离 是线性关系 ⇒ 方便作图与分析
总结公式关系
变量 | 关系 |
---|---|
电荷 vs 质量 | q ∝ m q \propto m q∝m (SDS 作用后) |
阻力 vs 质量 | f ∝ m α f \propto m^\alpha f∝mα (实验经验, α ≈ 1 \alpha \approx 1 α≈1) |
速度 vs 电荷 & 阻力 | v = q E f v = \frac{qE}{f} v=fqE |
合并后速度 vs 质量 | v ∝ 1 m α − 1 v \propto \frac{1}{m^{\alpha - 1}} v∝mα−11 或近似 1 m \frac{1}{m} m1 |
迁移距离 vs 质量 | d ∝ 1 m α or log m ∝ − d d \propto \frac{1}{m^\alpha} \quad \text{or} \quad \log m \propto -d d∝mα1orlogm∝−d |
最终解释一句话总结:
SDS 把蛋白都变成“电荷和质量成比例”,再通过凝胶提供的质量相关阻力,让迁移速度变成“与质量成反比”的形式,从而根据迁移距离判断蛋白大小。