- 博客(25)
- 收藏
- 关注
原创 心率提取,FFT
从面部视频中提取 rPPG 信号,通常是通过对视频帧中的面部区域进行颜色通道分析,提取出反映血液容积变化的信号。使用频域分析方法(如快速傅里叶变换)或时域分析方法(如峰值检测)从预处理后的信号中计算心率。对提取的 rPPG 信号进行滤波、归一化等预处理操作,以去除噪声和干扰。
2025-03-05 20:29:39
249
原创 滤波器基本概念
滤波的目的是去除信号中不需要的频率成分,例如噪声或干扰,同时保留信号中有用的部分。通常分为与两类。输出只取决于之前的输入。特点是其冲激响应在有限时间内衰减为零,仅依赖于当前和过去的输入信号值,具有线性相位和易于设计的优点,因此被广泛使用。输出不仅取决于之前的输入,还取决于之前的输出。IIR滤波器的冲激响应可以无限持续,并且除了依赖当前和过去的输入信号值外,还依赖于过去的输出信号值。在这里,FIR是又创建了新的数组进行计算平均,故只取决于之前的输入。
2025-03-05 16:06:11
190
原创 pytorch入门(六)
VGG-11通过五个重复使用的卷积块来构造网络,根据每个块内卷积层和输入输出通道的个数来决定·模型的类别。NiN重复使用由卷积层和代替全连接层的1x1的NiN块来构建网络。NiN去除了容易造成过拟合的全连接输出层,将其替换为通道数等于标签数的NiN块和全局平均化池层。
2024-10-07 12:15:42
448
原创 pytorch入门(四)
如果在输出层得不到期望的输出值,则通过构造输出值与真实值的损失函数作为目标函数,转入反向传播,逐层求出目标函数对各神经元权值的偏导数,构成目标函数对权值向量的。输入[0.1, 0.2, 0.3]、[1],通过公式计算即-1*0.2+ln(exp(0.1)+exp(0.2)+exp(0.3))=1.1019。,作为修改权值的依据,网络的学习在权值修改过程中完成。输入[1,2,3]、目标[4,5,6]则计算应为(4-1+5-2+6-3)/3=3。输入[1,2,3]、目标[4,5,6]则计算应为[(4-1)
2024-09-09 11:07:10
454
原创 pytorch入门(三)
pytorch中提供了pytorch.nn类,作为神经网络的基本骨架。pytorch.nn中的Module类则作为所有神经网络的基类。
2024-09-08 11:42:55
370
原创 pytorch入门(二)
网络可能会自动适应这种取值范围不同的数据,但学习肯定变得更加困难。将取值范围差异很大的数据输入到神经网络中,这是有问题的。对于这种数据,普遍采用的最佳实践是对每个特征做标准化,,这样得到的特征平均值为0,标准差为1。
2024-09-07 11:33:51
426
原创 react基础
JSX是 JavaScript XML(HTML)的缩写,表示在 JS 代码中书写 HTML 结构。用于在React中创建HTML结构(页面UI结构)JSX 并不是标准的 JS 语法,是 JS 的语法扩展,浏览器默认是不识别的,脚手架中内置的包,用来解析该语法Hooks的本质:一套能够使函数组件更加强大,更加灵活的钩子。React体系内组件分为类组件和函数组件。函数组件是一个更加匹配React的设计理念。
2023-05-24 08:21:35
313
2
原创 前端面试题
前端知识1. ES6新特性:let、const:变量声明拥有块作用域,不会变量提升,但会暂时性死区。解构赋值:const a = {...obj, val1: 1, val2: 2} 即扩展运算符…class关键字:实现类、对象继承。super、constructor、extends等。模板字符串、函数参数默认值、Symbol基本数据类型Map、和对象区别:key可以为任意值,对象key必须为string或symbol。Map.set(key,value) Map.get(k
2023-05-24 08:19:12
4086
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人